blob: c649fd838ffc8fc77fc90a593023adcda1502940 [file] [log] [blame]
// Post memory manager (PMM) calls
//
// Copyright (C) 2009 Kevin O'Connor <kevin@koconnor.net>
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "util.h" // checksum
#include "config.h" // BUILD_BIOS_ADDR
#include "memmap.h" // struct e820entry
#include "farptr.h" // GET_FARVAR
#include "biosvar.h" // GET_BDA
// Information on a reserved area.
struct allocinfo_s {
struct allocinfo_s *next, **pprev;
void *data, *dataend, *allocend;
};
// Information on a tracked memory allocation.
struct allocdetail_s {
struct allocinfo_s detailinfo;
struct allocinfo_s datainfo;
u32 handle;
};
// The various memory zones.
struct zone_s {
struct allocinfo_s *info;
};
struct zone_s ZoneLow, ZoneHigh, ZoneFSeg, ZoneTmpLow, ZoneTmpHigh;
static struct zone_s *Zones[] = {
&ZoneTmpLow, &ZoneLow, &ZoneFSeg, &ZoneTmpHigh, &ZoneHigh
};
/****************************************************************
* low-level memory reservations
****************************************************************/
// Find and reserve space from a given zone
static void *
allocSpace(struct zone_s *zone, u32 size, u32 align, struct allocinfo_s *fill)
{
struct allocinfo_s *info;
for (info = zone->info; info; info = info->next) {
void *dataend = info->dataend;
void *allocend = info->allocend;
void *newallocend = (void*)ALIGN_DOWN((u32)allocend - size, align);
if (newallocend >= dataend && newallocend <= allocend) {
// Found space - now reserve it.
struct allocinfo_s **pprev = info->pprev;
if (!fill)
fill = newallocend;
fill->next = info;
fill->pprev = pprev;
fill->data = newallocend;
fill->dataend = newallocend + size;
fill->allocend = allocend;
info->allocend = newallocend;
info->pprev = &fill->next;
*pprev = fill;
return newallocend;
}
}
return NULL;
}
// Release space allocated with allocSpace()
static void
freeSpace(struct allocinfo_s *info)
{
struct allocinfo_s *next = info->next;
struct allocinfo_s **pprev = info->pprev;
*pprev = next;
if (next) {
if (next->allocend == info->data)
next->allocend = info->allocend;
next->pprev = pprev;
}
}
// Add new memory to a zone
static void
addSpace(struct zone_s *zone, void *start, void *end)
{
// Find position to add space
struct allocinfo_s **pprev = &zone->info, *info;
for (;;) {
info = *pprev;
if (!info || info->data < start)
break;
pprev = &info->next;
}
// Add space using temporary allocation info.
struct allocdetail_s tempdetail;
tempdetail.datainfo.next = info;
tempdetail.datainfo.pprev = pprev;
tempdetail.datainfo.data = tempdetail.datainfo.dataend = start;
tempdetail.datainfo.allocend = end;
*pprev = &tempdetail.datainfo;
if (info)
info->pprev = &tempdetail.datainfo.next;
// Allocate final allocation info.
struct allocdetail_s *detail = allocSpace(
&ZoneTmpHigh, sizeof(*detail), MALLOC_MIN_ALIGN, NULL);
if (!detail) {
detail = allocSpace(&ZoneTmpLow, sizeof(*detail)
, MALLOC_MIN_ALIGN, NULL);
if (!detail) {
*tempdetail.datainfo.pprev = tempdetail.datainfo.next;
if (tempdetail.datainfo.next)
tempdetail.datainfo.next->pprev = tempdetail.datainfo.pprev;
warn_noalloc();
return;
}
}
// Replace temp alloc space with final alloc space
memcpy(&detail->datainfo, &tempdetail.datainfo, sizeof(detail->datainfo));
detail->handle = PMM_DEFAULT_HANDLE;
*tempdetail.datainfo.pprev = &detail->datainfo;
if (tempdetail.datainfo.next)
tempdetail.datainfo.next->pprev = &detail->datainfo.next;
}
// Search all zones for an allocation obtained from allocSpace()
static struct allocinfo_s *
findAlloc(void *data)
{
int i;
for (i=0; i<ARRAY_SIZE(Zones); i++) {
struct zone_s *zone = Zones[i];
struct allocinfo_s *info;
for (info = zone->info; info; info = info->next)
if (info->data == data)
return info;
}
return NULL;
}
// Return the last sentinal node of a zone
static struct allocinfo_s *
findLast(struct zone_s *zone)
{
struct allocinfo_s *info = zone->info;
if (!info)
return NULL;
for (;;) {
struct allocinfo_s *next = info->next;
if (!next)
return info;
info = next;
}
}
/****************************************************************
* Setup
****************************************************************/
void
malloc_setup(void)
{
ASSERT32FLAT();
dprintf(3, "malloc setup\n");
// Populate temp high ram
u32 highram = 0;
int i;
for (i=e820_count-1; i>=0; i--) {
struct e820entry *en = &e820_list[i];
u64 end = en->start + en->size;
if (end < 1024*1024)
break;
if (en->type != E820_RAM || end > 0xffffffff)
continue;
u32 s = en->start, e = end;
if (!highram) {
u32 newe = ALIGN_DOWN(e - CONFIG_MAX_HIGHTABLE, MALLOC_MIN_ALIGN);
if (newe <= e && newe >= s) {
highram = newe;
e = newe;
}
}
addSpace(&ZoneTmpHigh, (void*)s, (void*)e);
}
// Populate other regions
addSpace(&ZoneTmpLow, (void*)BUILD_STACK_ADDR, (void*)BUILD_EBDA_MINIMUM);
addSpace(&ZoneFSeg, BiosTableSpace, &BiosTableSpace[CONFIG_MAX_BIOSTABLE]);
addSpace(&ZoneLow, (void*)BUILD_LOWRAM_END, (void*)BUILD_LOWRAM_END);
if (highram) {
addSpace(&ZoneHigh, (void*)highram
, (void*)highram + CONFIG_MAX_HIGHTABLE);
add_e820(highram, CONFIG_MAX_HIGHTABLE, E820_RESERVED);
}
}
// Update pointers after code relocation.
void
malloc_fixupreloc(void)
{
ASSERT32FLAT();
if (!CONFIG_RELOCATE_INIT)
return;
dprintf(3, "malloc fixup reloc\n");
int i;
for (i=0; i<ARRAY_SIZE(Zones); i++) {
struct zone_s *zone = Zones[i];
if (zone->info)
zone->info->pprev = &zone->info;
}
// Add space free'd during relocation in f-segment to ZoneFSeg
extern u8 code32init_end[];
if ((u32)code32init_end > BUILD_BIOS_ADDR) {
memset((void*)BUILD_BIOS_ADDR, 0, (u32)code32init_end - BUILD_BIOS_ADDR);
addSpace(&ZoneFSeg, (void*)BUILD_BIOS_ADDR, code32init_end);
}
}
void
malloc_finalize(void)
{
ASSERT32FLAT();
dprintf(3, "malloc finalize\n");
// Reserve more low-mem if needed.
u32 endlow = GET_BDA(mem_size_kb)*1024;
add_e820(endlow, BUILD_LOWRAM_END-endlow, E820_RESERVED);
// Give back unused high ram.
struct allocinfo_s *info = findLast(&ZoneHigh);
if (info) {
u32 giveback = ALIGN_DOWN(info->allocend - info->dataend, PAGE_SIZE);
add_e820((u32)info->dataend, giveback, E820_RAM);
dprintf(1, "Returned %d bytes of ZoneHigh\n", giveback);
}
}
/****************************************************************
* ebda movement
****************************************************************/
// Move ebda
static int
relocate_ebda(u32 newebda, u32 oldebda, u8 ebda_size)
{
u32 lowram = GET_BDA(mem_size_kb) * 1024;
if (oldebda != lowram)
// EBDA isn't at end of ram - give up.
return -1;
// Do copy
memmove((void*)newebda, (void*)oldebda, ebda_size * 1024);
// Update indexes
dprintf(1, "ebda moved from %x to %x\n", oldebda, newebda);
SET_BDA(mem_size_kb, newebda / 1024);
SET_BDA(ebda_seg, FLATPTR_TO_SEG(newebda));
return 0;
}
// Support expanding the ZoneLow dynamically.
static void
zonelow_expand(u32 size, u32 align)
{
struct allocinfo_s *info = findLast(&ZoneLow);
if (!info)
return;
u32 oldpos = (u32)info->allocend;
u32 newpos = ALIGN_DOWN(oldpos - size, align);
u32 bottom = (u32)info->dataend;
if (newpos >= bottom && newpos <= oldpos)
// Space already present.
return;
u16 ebda_seg = get_ebda_seg();
u32 ebda_pos = (u32)MAKE_FLATPTR(ebda_seg, 0);
u8 ebda_size = GET_EBDA2(ebda_seg, size);
u32 ebda_end = ebda_pos + ebda_size * 1024;
if (ebda_end != bottom)
// Something else is after ebda - can't use any existing space.
newpos = ALIGN_DOWN(ebda_end - size, align);
u32 newbottom = ALIGN_DOWN(newpos, 1024);
u32 newebda = ALIGN_DOWN(newbottom - ebda_size * 1024, 1024);
if (newebda < BUILD_EBDA_MINIMUM)
// Not enough space.
return;
// Move ebda
int ret = relocate_ebda(newebda, ebda_pos, ebda_size);
if (ret)
return;
// Update zone
if (ebda_end == bottom) {
info->data = (void*)newbottom;
info->dataend = (void*)newbottom;
} else
addSpace(&ZoneLow, (void*)newbottom, (void*)ebda_end);
}
// Check if can expand the given zone to fulfill an allocation
static void *
allocExpandSpace(struct zone_s *zone, u32 size, u32 align
, struct allocinfo_s *fill)
{
void *data = allocSpace(zone, size, align, fill);
if (data || zone != &ZoneLow)
return data;
// Make sure to not move ebda while an optionrom is running.
if (unlikely(wait_preempt())) {
data = allocSpace(zone, size, align, fill);
if (data)
return data;
}
zonelow_expand(size, align);
return allocSpace(zone, size, align, fill);
}
/****************************************************************
* tracked memory allocations
****************************************************************/
// Allocate memory from the given zone and track it as a PMM allocation
void * __malloc
pmm_malloc(struct zone_s *zone, u32 handle, u32 size, u32 align)
{
ASSERT32FLAT();
if (!size)
return NULL;
// Find and reserve space for bookkeeping.
struct allocdetail_s *detail = allocSpace(
&ZoneTmpHigh, sizeof(*detail), MALLOC_MIN_ALIGN, NULL);
if (!detail) {
detail = allocSpace(&ZoneTmpLow, sizeof(*detail)
, MALLOC_MIN_ALIGN, NULL);
if (!detail)
return NULL;
}
// Find and reserve space for main allocation
void *data = allocExpandSpace(zone, size, align, &detail->datainfo);
if (!data) {
freeSpace(&detail->detailinfo);
return NULL;
}
dprintf(8, "pmm_malloc zone=%p handle=%x size=%d align=%x"
" ret=%p (detail=%p)\n"
, zone, handle, size, align
, data, detail);
detail->handle = handle;
return data;
}
// Free a data block allocated with pmm_malloc
int
pmm_free(void *data)
{
ASSERT32FLAT();
struct allocinfo_s *info = findAlloc(data);
if (!info || data == (void*)info || data == info->dataend)
return -1;
struct allocdetail_s *detail = container_of(
info, struct allocdetail_s, datainfo);
dprintf(8, "pmm_free %p (detail=%p)\n", data, detail);
freeSpace(info);
freeSpace(&detail->detailinfo);
return 0;
}
// Find the amount of free space in a given zone.
static u32
pmm_getspace(struct zone_s *zone)
{
// XXX - doesn't account for ZoneLow being able to grow.
// XXX - results not reliable when CONFIG_THREAD_OPTIONROMS
u32 maxspace = 0;
struct allocinfo_s *info;
for (info = zone->info; info; info = info->next) {
u32 space = info->allocend - info->dataend;
if (space > maxspace)
maxspace = space;
}
if (zone != &ZoneTmpHigh && zone != &ZoneTmpLow)
return maxspace;
// Account for space needed for PMM tracking.
u32 reserve = ALIGN(sizeof(struct allocdetail_s), MALLOC_MIN_ALIGN);
if (maxspace <= reserve)
return 0;
return maxspace - reserve;
}
// Find the data block allocated with pmm_malloc with a given handle.
static void *
pmm_find(u32 handle)
{
int i;
for (i=0; i<ARRAY_SIZE(Zones); i++) {
struct zone_s *zone = Zones[i];
struct allocinfo_s *info;
for (info = zone->info; info; info = info->next) {
if (info->data != (void*)info)
continue;
struct allocdetail_s *detail = container_of(
info, struct allocdetail_s, detailinfo);
if (detail->handle == handle)
return detail->datainfo.data;
}
}
return NULL;
}
/****************************************************************
* pmm interface
****************************************************************/
struct pmmheader {
u32 signature;
u8 version;
u8 length;
u8 checksum;
u16 entry_offset;
u16 entry_seg;
u8 reserved[5];
} PACKED;
extern struct pmmheader PMMHEADER;
#define PMM_SIGNATURE 0x4d4d5024 // $PMM
#if CONFIG_PMM
struct pmmheader PMMHEADER __aligned(16) VAR16EXPORT = {
.version = 0x01,
.length = sizeof(PMMHEADER),
.entry_seg = SEG_BIOS,
};
#endif
#define PMM_FUNCTION_NOT_SUPPORTED 0xffffffff
// PMM - allocate
static u32
handle_pmm00(u16 *args)
{
u32 length = *(u32*)&args[1], handle = *(u32*)&args[3];
u16 flags = args[5];
dprintf(3, "pmm00: length=%x handle=%x flags=%x\n"
, length, handle, flags);
struct zone_s *lowzone = &ZoneTmpLow, *highzone = &ZoneTmpHigh;
if (flags & 8) {
// Permanent memory request.
lowzone = &ZoneLow;
highzone = &ZoneHigh;
}
if (!length) {
// Memory size request
switch (flags & 3) {
default:
case 0:
return 0;
case 1:
return pmm_getspace(lowzone);
case 2:
return pmm_getspace(highzone);
case 3: {
u32 spacelow = pmm_getspace(lowzone);
u32 spacehigh = pmm_getspace(highzone);
if (spacelow > spacehigh)
return spacelow;
return spacehigh;
}
}
}
u32 size = length * 16;
if ((s32)size <= 0)
return 0;
u32 align = MALLOC_MIN_ALIGN;
if (flags & 4) {
align = 1<<__ffs(size);
if (align < MALLOC_MIN_ALIGN)
align = MALLOC_MIN_ALIGN;
}
switch (flags & 3) {
default:
case 0:
return 0;
case 1:
return (u32)pmm_malloc(lowzone, handle, size, align);
case 2:
return (u32)pmm_malloc(highzone, handle, size, align);
case 3: {
void *data = pmm_malloc(lowzone, handle, size, align);
if (data)
return (u32)data;
return (u32)pmm_malloc(highzone, handle, size, align);
}
}
}
// PMM - find
static u32
handle_pmm01(u16 *args)
{
u32 handle = *(u32*)&args[1];
dprintf(3, "pmm01: handle=%x\n", handle);
if (handle == PMM_DEFAULT_HANDLE)
return 0;
return (u32)pmm_find(handle);
}
// PMM - deallocate
static u32
handle_pmm02(u16 *args)
{
u32 buffer = *(u32*)&args[1];
dprintf(3, "pmm02: buffer=%x\n", buffer);
int ret = pmm_free((void*)buffer);
if (ret)
// Error
return 1;
return 0;
}
static u32
handle_pmmXX(u16 *args)
{
return PMM_FUNCTION_NOT_SUPPORTED;
}
u32 VISIBLE32INIT
handle_pmm(u16 *args)
{
ASSERT32FLAT();
if (! CONFIG_PMM)
return PMM_FUNCTION_NOT_SUPPORTED;
u16 arg1 = args[0];
dprintf(DEBUG_HDL_pmm, "pmm call arg1=%x\n", arg1);
int oldpreempt;
if (CONFIG_THREAD_OPTIONROMS) {
// Not a preemption event - don't wait in wait_preempt()
oldpreempt = CanPreempt;
CanPreempt = 0;
}
u32 ret;
switch (arg1) {
case 0x00: ret = handle_pmm00(args); break;
case 0x01: ret = handle_pmm01(args); break;
case 0x02: ret = handle_pmm02(args); break;
default: ret = handle_pmmXX(args); break;
}
if (CONFIG_THREAD_OPTIONROMS)
CanPreempt = oldpreempt;
return ret;
}
// romlayout.S
extern void entry_pmm(void);
void
pmm_setup(void)
{
if (! CONFIG_PMM)
return;
dprintf(3, "init PMM\n");
PMMHEADER.signature = PMM_SIGNATURE;
PMMHEADER.entry_offset = (u32)entry_pmm - BUILD_BIOS_ADDR;
PMMHEADER.checksum -= checksum(&PMMHEADER, sizeof(PMMHEADER));
}
void
pmm_finalize(void)
{
if (! CONFIG_PMM)
return;
dprintf(3, "finalize PMM\n");
PMMHEADER.signature = 0;
PMMHEADER.entry_offset = 0;
}