blob: 74c456346d61eb60a19ebe242d6e24528034f899 [file] [log] [blame]
/////////////////////////////////////////////////////////////////////////
//
// 32 bit Bochs BIOS init code
// Copyright (C) 2006 Fabrice Bellard
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
#include "util.h" // dprintf
#include "pci.h" // PCIDevice
#include "types.h" // u32
#include "config.h" // CONFIG_*
// Memory addresses used by this code. (Note global variables (bss)
// are at 0x40000).
#define CPU_COUNT_ADDR 0xf000
#define AP_BOOT_ADDR 0x10000
#define PM_IO_BASE 0xb000
#define SMB_IO_BASE 0xb100
#define cpuid(index, eax, ebx, ecx, edx) \
asm volatile ("cpuid" \
: "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
: "0" (index))
#define CPUID_APIC (1 << 9)
#define APIC_BASE ((u8 *)0xfee00000)
#define APIC_ICR_LOW 0x300
#define APIC_SVR 0x0F0
#define APIC_ID 0x020
#define APIC_LVT3 0x370
#define APIC_ENABLED 0x0100
#define MPTABLE_MAX_SIZE 0x00002000
#define SMI_CMD_IO_ADDR 0xb2
static inline void writel(void *addr, u32 val)
{
*(volatile u32 *)addr = val;
}
static inline void writew(void *addr, u16 val)
{
*(volatile u16 *)addr = val;
}
static inline void writeb(void *addr, u8 val)
{
*(volatile u8 *)addr = val;
}
static inline u32 readl(const void *addr)
{
return *(volatile const u32 *)addr;
}
static inline u16 readw(const void *addr)
{
return *(volatile const u16 *)addr;
}
static inline u8 readb(const void *addr)
{
return *(volatile const u8 *)addr;
}
int smp_cpus;
u32 cpuid_signature;
u32 cpuid_features;
u32 cpuid_ext_features;
u8 bios_uuid[16];
#if (CONFIG_USE_EBDA_TABLES == 1)
unsigned long ebda_cur_addr;
#endif
int acpi_enabled;
u32 pm_io_base, smb_io_base;
int pm_sci_int;
unsigned long bios_table_cur_addr;
unsigned long bios_table_end_addr;
void uuid_probe(void)
{
#if (CONFIG_QEMU == 1)
u32 eax, ebx, ecx, edx;
// check if backdoor port exists
asm volatile ("outl %%eax, %%dx"
: "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx)
: "a" (0x564d5868), "c" (0xa), "d" (0x5658));
if (ebx == 0x564d5868) {
u32 *uuid_ptr = (u32 *)bios_uuid;
// get uuid
asm volatile ("outl %%eax, %%dx"
: "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx)
: "a" (0x564d5868), "c" (0x13), "d" (0x5658));
uuid_ptr[0] = eax;
uuid_ptr[1] = ebx;
uuid_ptr[2] = ecx;
uuid_ptr[3] = edx;
} else
#endif
{
// UUID not set
memset(bios_uuid, 0, 16);
}
}
void cpu_probe(void)
{
u32 eax, ebx, ecx, edx;
cpuid(1, eax, ebx, ecx, edx);
cpuid_signature = eax;
cpuid_features = edx;
cpuid_ext_features = ecx;
}
/****************************************************/
/* SMP probe */
extern u8 smp_ap_boot_code_start;
extern u8 smp_ap_boot_code_end;
/* find the number of CPUs by launching a SIPI to them */
void smp_probe(void)
{
u32 val, sipi_vector;
smp_cpus = 1;
if (cpuid_features & CPUID_APIC) {
/* enable local APIC */
val = readl(APIC_BASE + APIC_SVR);
val |= APIC_ENABLED;
writel(APIC_BASE + APIC_SVR, val);
writew((void *)CPU_COUNT_ADDR, 1);
/* copy AP boot code */
memcpy((void *)AP_BOOT_ADDR, &smp_ap_boot_code_start,
&smp_ap_boot_code_end - &smp_ap_boot_code_start);
/* broadcast SIPI */
writel(APIC_BASE + APIC_ICR_LOW, 0x000C4500);
sipi_vector = AP_BOOT_ADDR >> 12;
writel(APIC_BASE + APIC_ICR_LOW, 0x000C4600 | sipi_vector);
usleep(10*1000);
smp_cpus = readw((void *)CPU_COUNT_ADDR);
}
dprintf(1, "Found %d cpu(s)\n", smp_cpus);
}
/****************************************************/
/* PCI init */
#define PCI_ADDRESS_SPACE_MEM 0x00
#define PCI_ADDRESS_SPACE_IO 0x01
#define PCI_ADDRESS_SPACE_MEM_PREFETCH 0x08
#define PCI_ROM_SLOT 6
#define PCI_NUM_REGIONS 7
#define PCI_DEVICES_MAX 64
#define PCI_VENDOR_ID 0x00 /* 16 bits */
#define PCI_DEVICE_ID 0x02 /* 16 bits */
#define PCI_COMMAND 0x04 /* 16 bits */
#define PCI_COMMAND_IO 0x1 /* Enable response in I/O space */
#define PCI_COMMAND_MEMORY 0x2 /* Enable response in Memory space */
#define PCI_CLASS_DEVICE 0x0a /* Device class */
#define PCI_INTERRUPT_LINE 0x3c /* 8 bits */
#define PCI_INTERRUPT_PIN 0x3d /* 8 bits */
#define PCI_MIN_GNT 0x3e /* 8 bits */
#define PCI_MAX_LAT 0x3f /* 8 bits */
static u32 pci_bios_io_addr;
static u32 pci_bios_mem_addr;
static u32 pci_bios_bigmem_addr;
/* host irqs corresponding to PCI irqs A-D */
static u8 pci_irqs[4] = { 11, 9, 11, 9 };
static PCIDevice i440_pcidev;
static void pci_set_io_region_addr(PCIDevice d, int region_num, u32 addr)
{
u16 cmd;
u32 ofs, old_addr;
if ( region_num == PCI_ROM_SLOT ) {
ofs = 0x30;
}else{
ofs = 0x10 + region_num * 4;
}
old_addr = pci_config_readl(d, ofs);
pci_config_writel(d, ofs, addr);
dprintf(1, "region %d: 0x%08x\n", region_num, addr);
/* enable memory mappings */
cmd = pci_config_readw(d, PCI_COMMAND);
if ( region_num == PCI_ROM_SLOT )
cmd |= 2;
else if (old_addr & PCI_ADDRESS_SPACE_IO)
cmd |= 1;
else
cmd |= 2;
pci_config_writew(d, PCI_COMMAND, cmd);
}
/* return the global irq number corresponding to a given device irq
pin. We could also use the bus number to have a more precise
mapping. */
static int pci_slot_get_pirq(PCIDevice pci_dev, int irq_num)
{
int slot_addend;
slot_addend = (pci_dev.devfn >> 3) - 1;
return (irq_num + slot_addend) & 3;
}
static void pci_bios_init_bridges(PCIDevice d)
{
u16 vendor_id, device_id;
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
if (vendor_id == 0x8086 && device_id == 0x7000) {
int i, irq;
u8 elcr[2];
/* PIIX3 bridge */
elcr[0] = 0x00;
elcr[1] = 0x00;
for(i = 0; i < 4; i++) {
irq = pci_irqs[i];
/* set to trigger level */
elcr[irq >> 3] |= (1 << (irq & 7));
/* activate irq remapping in PIIX */
pci_config_writeb(d, 0x60 + i, irq);
}
outb(elcr[0], 0x4d0);
outb(elcr[1], 0x4d1);
dprintf(1, "PIIX3 init: elcr=%02x %02x\n",
elcr[0], elcr[1]);
} else if (vendor_id == 0x8086 && device_id == 0x1237) {
/* i440 PCI bridge */
i440_pcidev = d;
}
}
asm(
".globl smp_ap_boot_code_start\n"
".globl smp_ap_boot_code_end\n"
".global smm_relocation_start\n"
".global smm_relocation_end\n"
".global smm_code_start\n"
".global smm_code_end\n"
" .code16\n"
"smp_ap_boot_code_start:\n"
" xor %ax, %ax\n"
" mov %ax, %ds\n"
" incw " __stringify(CPU_COUNT_ADDR) "\n"
"1:\n"
" hlt\n"
" jmp 1b\n"
"smp_ap_boot_code_end:\n"
/* code to relocate SMBASE to 0xa0000 */
"smm_relocation_start:\n"
" mov $0x38000 + 0x7efc, %ebx\n"
" addr32 mov (%ebx), %al\n" /* revision ID to see if x86_64 or x86 */
" cmp $0x64, %al\n"
" je 1f\n"
" mov $0x38000 + 0x7ef8, %ebx\n"
" jmp 2f\n"
"1:\n"
" mov $0x38000 + 0x7f00, %ebx\n"
"2:\n"
" movl $0xa0000, %eax\n"
" addr32 movl %eax, (%ebx)\n"
/* indicate to the BIOS that the SMM code was executed */
" mov $0x00, %al\n"
" movw $0xb3, %dx\n"
" outb %al, %dx\n"
" rsm\n"
"smm_relocation_end:\n"
/* minimal SMM code to enable or disable ACPI */
"smm_code_start:\n"
" movw $0xb2, %dx\n"
" inb %dx, %al\n"
" cmp $0xf0, %al\n"
" jne 1f\n"
/* ACPI disable */
" mov $" __stringify(PM_IO_BASE) " + 0x04, %dx\n" /* PMCNTRL */
" inw %dx, %ax\n"
" andw $~1, %ax\n"
" outw %ax, %dx\n"
" jmp 2f\n"
"1:\n"
" cmp $0xf1, %al\n"
" jne 2f\n"
/* ACPI enable */
" mov $" __stringify(PM_IO_BASE) " + 0x04, %dx\n" /* PMCNTRL */
" inw %dx, %ax\n"
" orw $1, %ax\n"
" outw %ax, %dx\n"
"2:\n"
" rsm\n"
"smm_code_end:\n"
" .code32\n"
);
extern u8 smm_relocation_start, smm_relocation_end;
extern u8 smm_code_start, smm_code_end;
#if (CONFIG_USE_SMM == 1)
static void smm_init(PCIDevice d)
{
u32 value;
/* check if SMM init is already done */
value = pci_config_readl(d, 0x58);
if ((value & (1 << 25)) == 0) {
/* copy the SMM relocation code */
memcpy((void *)0x38000, &smm_relocation_start,
&smm_relocation_end - &smm_relocation_start);
/* enable SMI generation when writing to the APMC register */
pci_config_writel(d, 0x58, value | (1 << 25));
/* init APM status port */
outb(0x01, 0xb3);
/* raise an SMI interrupt */
outb(0x00, 0xb2);
/* wait until SMM code executed */
while (inb(0xb3) != 0x00)
;
/* enable the SMM memory window */
pci_config_writeb(i440_pcidev, 0x72, 0x02 | 0x48);
/* copy the SMM code */
memcpy((void *)0xa8000, &smm_code_start,
&smm_code_end - &smm_code_start);
wbinvd();
/* close the SMM memory window and enable normal SMM */
pci_config_writeb(i440_pcidev, 0x72, 0x02 | 0x08);
}
}
#endif
static void pci_bios_init_device(PCIDevice d)
{
int class;
u32 *paddr;
int i, pin, pic_irq, vendor_id, device_id;
class = pci_config_readw(d, PCI_CLASS_DEVICE);
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
dprintf(1, "PCI: bus=%d devfn=0x%02x: vendor_id=0x%04x device_id=0x%04x\n",
d.bus, d.devfn, vendor_id, device_id);
switch(class) {
case 0x0101:
if (vendor_id == 0x8086 && device_id == 0x7010) {
/* PIIX3 IDE */
pci_config_writew(d, 0x40, 0x8000); // enable IDE0
pci_config_writew(d, 0x42, 0x8000); // enable IDE1
goto default_map;
} else {
/* IDE: we map it as in ISA mode */
pci_set_io_region_addr(d, 0, 0x1f0);
pci_set_io_region_addr(d, 1, 0x3f4);
pci_set_io_region_addr(d, 2, 0x170);
pci_set_io_region_addr(d, 3, 0x374);
}
break;
case 0x0300:
if (vendor_id != 0x1234)
goto default_map;
/* VGA: map frame buffer to default Bochs VBE address */
pci_set_io_region_addr(d, 0, 0xE0000000);
break;
case 0x0800:
/* PIC */
if (vendor_id == 0x1014) {
/* IBM */
if (device_id == 0x0046 || device_id == 0xFFFF) {
/* MPIC & MPIC2 */
pci_set_io_region_addr(d, 0, 0x80800000 + 0x00040000);
}
}
break;
case 0xff00:
if (vendor_id == 0x0106b &&
(device_id == 0x0017 || device_id == 0x0022)) {
/* macio bridge */
pci_set_io_region_addr(d, 0, 0x80800000);
}
break;
default:
default_map:
/* default memory mappings */
for(i = 0; i < PCI_NUM_REGIONS; i++) {
int ofs;
u32 val, size ;
if (i == PCI_ROM_SLOT)
ofs = 0x30;
else
ofs = 0x10 + i * 4;
pci_config_writel(d, ofs, 0xffffffff);
val = pci_config_readl(d, ofs);
if (val != 0) {
size = (~(val & ~0xf)) + 1;
if (val & PCI_ADDRESS_SPACE_IO)
paddr = &pci_bios_io_addr;
else if (size >= 0x04000000)
paddr = &pci_bios_bigmem_addr;
else
paddr = &pci_bios_mem_addr;
*paddr = (*paddr + size - 1) & ~(size - 1);
pci_set_io_region_addr(d, i, *paddr);
*paddr += size;
}
}
break;
}
/* map the interrupt */
pin = pci_config_readb(d, PCI_INTERRUPT_PIN);
if (pin != 0) {
pin = pci_slot_get_pirq(d, pin - 1);
pic_irq = pci_irqs[pin];
pci_config_writeb(d, PCI_INTERRUPT_LINE, pic_irq);
}
if (vendor_id == 0x8086 && device_id == 0x7113) {
/* PIIX4 Power Management device (for ACPI) */
pm_io_base = PM_IO_BASE;
pci_config_writel(d, 0x40, pm_io_base | 1);
pci_config_writeb(d, 0x80, 0x01); /* enable PM io space */
smb_io_base = SMB_IO_BASE;
pci_config_writel(d, 0x90, smb_io_base | 1);
pci_config_writeb(d, 0xd2, 0x09); /* enable SMBus io space */
pm_sci_int = pci_config_readb(d, PCI_INTERRUPT_LINE);
#if (CONFIG_USE_SMM == 1)
smm_init(d);
#endif
acpi_enabled = 1;
}
}
void pci_for_each_device(void (*init_func)(PCIDevice d))
{
int bus, devfn;
u16 vendor_id, device_id;
for(bus = 0; bus < 1; bus++) {
for(devfn = 0; devfn < 256; devfn++) {
PCIDevice d = pci_bd(bus, devfn);
vendor_id = pci_config_readw(d, PCI_VENDOR_ID);
device_id = pci_config_readw(d, PCI_DEVICE_ID);
if (vendor_id != 0xffff || device_id != 0xffff) {
init_func(d);
}
}
}
}
void pci_bios_init(void)
{
pci_bios_io_addr = 0xc000;
pci_bios_mem_addr = 0xf0000000;
pci_bios_bigmem_addr = GET_EBDA(ram_size);
if (pci_bios_bigmem_addr < 0x90000000)
pci_bios_bigmem_addr = 0x90000000;
pci_for_each_device(pci_bios_init_bridges);
pci_for_each_device(pci_bios_init_device);
}
/****************************************************/
/* Multi Processor table init */
static void putb(u8 **pp, int val)
{
u8 *q;
q = *pp;
*q++ = val;
*pp = q;
}
static void putstr(u8 **pp, const char *str)
{
u8 *q;
q = *pp;
while (*str)
*q++ = *str++;
*pp = q;
}
static void putle16(u8 **pp, int val)
{
u8 *q;
q = *pp;
*q++ = val;
*q++ = val >> 8;
*pp = q;
}
static void putle32(u8 **pp, int val)
{
u8 *q;
q = *pp;
*q++ = val;
*q++ = val >> 8;
*q++ = val >> 16;
*q++ = val >> 24;
*pp = q;
}
static unsigned long align(unsigned long addr, unsigned long v)
{
return (addr + v - 1) & ~(v - 1);
}
static void mptable_init(void)
{
u8 *mp_config_table, *q, *float_pointer_struct;
int ioapic_id, i, len;
int mp_config_table_size;
#if (CONFIG_QEMU == 1)
if (smp_cpus <= 1)
return;
#endif
#if (CONFIG_USE_EBDA_TABLES == 1)
mp_config_table = (u8 *)(GET_EBDA(ram_size) - CONFIG_ACPI_DATA_SIZE
- MPTABLE_MAX_SIZE);
#else
bios_table_cur_addr = align(bios_table_cur_addr, 16);
mp_config_table = (u8 *)bios_table_cur_addr;
#endif
q = mp_config_table;
putstr(&q, "PCMP"); /* "PCMP signature */
putle16(&q, 0); /* table length (patched later) */
putb(&q, 4); /* spec rev */
putb(&q, 0); /* checksum (patched later) */
#if (CONFIG_QEMU == 1)
putstr(&q, "QEMUCPU "); /* OEM id */
#else
putstr(&q, "BOCHSCPU");
#endif
putstr(&q, "0.1 "); /* vendor id */
putle32(&q, 0); /* OEM table ptr */
putle16(&q, 0); /* OEM table size */
putle16(&q, smp_cpus + 18); /* entry count */
putle32(&q, 0xfee00000); /* local APIC addr */
putle16(&q, 0); /* ext table length */
putb(&q, 0); /* ext table checksum */
putb(&q, 0); /* reserved */
for(i = 0; i < smp_cpus; i++) {
putb(&q, 0); /* entry type = processor */
putb(&q, i); /* APIC id */
putb(&q, 0x11); /* local APIC version number */
if (i == 0)
putb(&q, 3); /* cpu flags: enabled, bootstrap cpu */
else
putb(&q, 1); /* cpu flags: enabled */
putb(&q, 0); /* cpu signature */
putb(&q, 6);
putb(&q, 0);
putb(&q, 0);
putle16(&q, 0x201); /* feature flags */
putle16(&q, 0);
putle16(&q, 0); /* reserved */
putle16(&q, 0);
putle16(&q, 0);
putle16(&q, 0);
}
/* isa bus */
putb(&q, 1); /* entry type = bus */
putb(&q, 0); /* bus ID */
putstr(&q, "ISA ");
/* ioapic */
ioapic_id = smp_cpus;
putb(&q, 2); /* entry type = I/O APIC */
putb(&q, ioapic_id); /* apic ID */
putb(&q, 0x11); /* I/O APIC version number */
putb(&q, 1); /* enable */
putle32(&q, 0xfec00000); /* I/O APIC addr */
/* irqs */
for(i = 0; i < 16; i++) {
putb(&q, 3); /* entry type = I/O interrupt */
putb(&q, 0); /* interrupt type = vectored interrupt */
putb(&q, 0); /* flags: po=0, el=0 */
putb(&q, 0);
putb(&q, 0); /* source bus ID = ISA */
putb(&q, i); /* source bus IRQ */
putb(&q, ioapic_id); /* dest I/O APIC ID */
putb(&q, i); /* dest I/O APIC interrupt in */
}
/* patch length */
len = q - mp_config_table;
mp_config_table[4] = len;
mp_config_table[5] = len >> 8;
mp_config_table[7] = -checksum(mp_config_table, q - mp_config_table);
mp_config_table_size = q - mp_config_table;
#if (CONFIG_USE_EBDA_TABLES != 1)
bios_table_cur_addr += mp_config_table_size;
#endif
/* floating pointer structure */
#if (CONFIG_USE_EBDA_TABLES == 1)
ebda_cur_addr = align(ebda_cur_addr, 16);
float_pointer_struct = (u8 *)ebda_cur_addr;
#else
bios_table_cur_addr = align(bios_table_cur_addr, 16);
float_pointer_struct = (u8 *)bios_table_cur_addr;
#endif
q = float_pointer_struct;
putstr(&q, "_MP_");
/* pointer to MP config table */
putle32(&q, (unsigned long)mp_config_table);
putb(&q, 1); /* length in 16 byte units */
putb(&q, 4); /* MP spec revision */
putb(&q, 0); /* checksum (patched later) */
putb(&q, 0); /* MP feature byte 1 */
putb(&q, 0);
putb(&q, 0);
putb(&q, 0);
putb(&q, 0);
float_pointer_struct[10] = -checksum(float_pointer_struct
, q - float_pointer_struct);
#if (CONFIG_USE_EBDA_TABLES == 1)
ebda_cur_addr += (q - float_pointer_struct);
#else
bios_table_cur_addr += (q - float_pointer_struct);
#endif
dprintf(1, "MP table addr=0x%08lx MPC table addr=0x%08lx size=0x%x\n",
(unsigned long)float_pointer_struct,
(unsigned long)mp_config_table,
mp_config_table_size);
}
/****************************************************/
/* ACPI tables init */
/* Table structure from Linux kernel (the ACPI tables are under the
BSD license) */
#define ACPI_TABLE_HEADER_DEF /* ACPI common table header */ \
u8 signature [4]; /* ACPI signature (4 ASCII characters) */\
u32 length; /* Length of table, in bytes, including header */\
u8 revision; /* ACPI Specification minor version # */\
u8 checksum; /* To make sum of entire table == 0 */\
u8 oem_id [6]; /* OEM identification */\
u8 oem_table_id [8]; /* OEM table identification */\
u32 oem_revision; /* OEM revision number */\
u8 asl_compiler_id [4]; /* ASL compiler vendor ID */\
u32 asl_compiler_revision; /* ASL compiler revision number */
struct acpi_table_header /* ACPI common table header */
{
ACPI_TABLE_HEADER_DEF
};
struct rsdp_descriptor /* Root System Descriptor Pointer */
{
u8 signature [8]; /* ACPI signature, contains "RSD PTR " */
u8 checksum; /* To make sum of struct == 0 */
u8 oem_id [6]; /* OEM identification */
u8 revision; /* Must be 0 for 1.0, 2 for 2.0 */
u32 rsdt_physical_address; /* 32-bit physical address of RSDT */
u32 length; /* XSDT Length in bytes including hdr */
u64 xsdt_physical_address; /* 64-bit physical address of XSDT */
u8 extended_checksum; /* Checksum of entire table */
u8 reserved [3]; /* Reserved field must be 0 */
};
/*
* ACPI 1.0 Root System Description Table (RSDT)
*/
struct rsdt_descriptor_rev1
{
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
u32 table_offset_entry [3]; /* Array of pointers to other */
/* ACPI tables */
};
/*
* ACPI 1.0 Firmware ACPI Control Structure (FACS)
*/
struct facs_descriptor_rev1
{
u8 signature[4]; /* ACPI Signature */
u32 length; /* Length of structure, in bytes */
u32 hardware_signature; /* Hardware configuration signature */
u32 firmware_waking_vector; /* ACPI OS waking vector */
u32 global_lock; /* Global Lock */
u32 S4bios_f : 1; /* Indicates if S4BIOS support is present */
u32 reserved1 : 31; /* Must be 0 */
u8 resverved3 [40]; /* Reserved - must be zero */
};
/*
* ACPI 1.0 Fixed ACPI Description Table (FADT)
*/
struct fadt_descriptor_rev1
{
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
u32 firmware_ctrl; /* Physical address of FACS */
u32 dsdt; /* Physical address of DSDT */
u8 model; /* System Interrupt Model */
u8 reserved1; /* Reserved */
u16 sci_int; /* System vector of SCI interrupt */
u32 smi_cmd; /* Port address of SMI command port */
u8 acpi_enable; /* Value to write to smi_cmd to enable ACPI */
u8 acpi_disable; /* Value to write to smi_cmd to disable ACPI */
u8 S4bios_req; /* Value to write to SMI CMD to enter S4BIOS state */
u8 reserved2; /* Reserved - must be zero */
u32 pm1a_evt_blk; /* Port address of Power Mgt 1a acpi_event Reg Blk */
u32 pm1b_evt_blk; /* Port address of Power Mgt 1b acpi_event Reg Blk */
u32 pm1a_cnt_blk; /* Port address of Power Mgt 1a Control Reg Blk */
u32 pm1b_cnt_blk; /* Port address of Power Mgt 1b Control Reg Blk */
u32 pm2_cnt_blk; /* Port address of Power Mgt 2 Control Reg Blk */
u32 pm_tmr_blk; /* Port address of Power Mgt Timer Ctrl Reg Blk */
u32 gpe0_blk; /* Port addr of General Purpose acpi_event 0 Reg Blk */
u32 gpe1_blk; /* Port addr of General Purpose acpi_event 1 Reg Blk */
u8 pm1_evt_len; /* Byte length of ports at pm1_x_evt_blk */
u8 pm1_cnt_len; /* Byte length of ports at pm1_x_cnt_blk */
u8 pm2_cnt_len; /* Byte Length of ports at pm2_cnt_blk */
u8 pm_tmr_len; /* Byte Length of ports at pm_tm_blk */
u8 gpe0_blk_len; /* Byte Length of ports at gpe0_blk */
u8 gpe1_blk_len; /* Byte Length of ports at gpe1_blk */
u8 gpe1_base; /* Offset in gpe model where gpe1 events start */
u8 reserved3; /* Reserved */
u16 plvl2_lat; /* Worst case HW latency to enter/exit C2 state */
u16 plvl3_lat; /* Worst case HW latency to enter/exit C3 state */
u16 flush_size; /* Size of area read to flush caches */
u16 flush_stride; /* Stride used in flushing caches */
u8 duty_offset; /* Bit location of duty cycle field in p_cnt reg */
u8 duty_width; /* Bit width of duty cycle field in p_cnt reg */
u8 day_alrm; /* Index to day-of-month alarm in RTC CMOS RAM */
u8 mon_alrm; /* Index to month-of-year alarm in RTC CMOS RAM */
u8 century; /* Index to century in RTC CMOS RAM */
u8 reserved4; /* Reserved */
u8 reserved4a; /* Reserved */
u8 reserved4b; /* Reserved */
#if 0
u32 wb_invd : 1; /* The wbinvd instruction works properly */
u32 wb_invd_flush : 1; /* The wbinvd flushes but does not invalidate */
u32 proc_c1 : 1; /* All processors support C1 state */
u32 plvl2_up : 1; /* C2 state works on MP system */
u32 pwr_button : 1; /* Power button is handled as a generic feature */
u32 sleep_button : 1; /* Sleep button is handled as a generic feature, or not present */
u32 fixed_rTC : 1; /* RTC wakeup stat not in fixed register space */
u32 rtcs4 : 1; /* RTC wakeup stat not possible from S4 */
u32 tmr_val_ext : 1; /* The tmr_val width is 32 bits (0 = 24 bits) */
u32 reserved5 : 23; /* Reserved - must be zero */
#else
u32 flags;
#endif
};
/*
* MADT values and structures
*/
/* Values for MADT PCATCompat */
#define DUAL_PIC 0
#define MULTIPLE_APIC 1
/* Master MADT */
struct multiple_apic_table
{
ACPI_TABLE_HEADER_DEF /* ACPI common table header */
u32 local_apic_address; /* Physical address of local APIC */
#if 0
u32 PCATcompat : 1; /* A one indicates system also has dual 8259s */
u32 reserved1 : 31;
#else
u32 flags;
#endif
};
/* Values for Type in APIC_HEADER_DEF */
#define APIC_PROCESSOR 0
#define APIC_IO 1
#define APIC_XRUPT_OVERRIDE 2
#define APIC_NMI 3
#define APIC_LOCAL_NMI 4
#define APIC_ADDRESS_OVERRIDE 5
#define APIC_IO_SAPIC 6
#define APIC_LOCAL_SAPIC 7
#define APIC_XRUPT_SOURCE 8
#define APIC_RESERVED 9 /* 9 and greater are reserved */
/*
* MADT sub-structures (Follow MULTIPLE_APIC_DESCRIPTION_TABLE)
*/
#define APIC_HEADER_DEF /* Common APIC sub-structure header */\
u8 type; \
u8 length;
/* Sub-structures for MADT */
struct madt_processor_apic
{
APIC_HEADER_DEF
u8 processor_id; /* ACPI processor id */
u8 local_apic_id; /* Processor's local APIC id */
#if 0
u32 processor_enabled: 1; /* Processor is usable if set */
u32 reserved2 : 31; /* Reserved, must be zero */
#else
u32 flags;
#endif
};
struct madt_io_apic
{
APIC_HEADER_DEF
u8 io_apic_id; /* I/O APIC ID */
u8 reserved; /* Reserved - must be zero */
u32 address; /* APIC physical address */
u32 interrupt; /* Global system interrupt where INTI
* lines start */
};
#include "acpi-dsdt.hex"
static inline u16 cpu_to_le16(u16 x)
{
return x;
}
static inline u32 cpu_to_le32(u32 x)
{
return x;
}
static void acpi_build_table_header(struct acpi_table_header *h,
char *sig, int len, u8 rev)
{
memcpy(h->signature, sig, 4);
h->length = cpu_to_le32(len);
h->revision = rev;
#if (CONFIG_QEMU == 1)
memcpy(h->oem_id, "QEMU ", 6);
memcpy(h->oem_table_id, "QEMU", 4);
#else
memcpy(h->oem_id, "BOCHS ", 6);
memcpy(h->oem_table_id, "BXPC", 4);
#endif
memcpy(h->oem_table_id + 4, sig, 4);
h->oem_revision = cpu_to_le32(1);
#if (CONFIG_QEMU == 1)
memcpy(h->asl_compiler_id, "QEMU", 4);
#else
memcpy(h->asl_compiler_id, "BXPC", 4);
#endif
h->asl_compiler_revision = cpu_to_le32(1);
h->checksum = -checksum((void *)h, len);
}
int acpi_build_processor_ssdt(u8 *ssdt)
{
u8 *ssdt_ptr = ssdt;
int i, length;
int acpi_cpus = smp_cpus > 0xff ? 0xff : smp_cpus;
ssdt_ptr[9] = 0; // checksum;
ssdt_ptr += sizeof(struct acpi_table_header);
// caluculate the length of processor block and scope block excluding PkgLength
length = 0x0d * acpi_cpus + 4;
// build processor scope header
*(ssdt_ptr++) = 0x10; // ScopeOp
if (length <= 0x3e) {
*(ssdt_ptr++) = length + 1;
} else {
*(ssdt_ptr++) = 0x7F;
*(ssdt_ptr++) = (length + 2) >> 6;
}
*(ssdt_ptr++) = '_'; // Name
*(ssdt_ptr++) = 'P';
*(ssdt_ptr++) = 'R';
*(ssdt_ptr++) = '_';
// build object for each processor
for(i=0;i<acpi_cpus;i++) {
*(ssdt_ptr++) = 0x5B; // ProcessorOp
*(ssdt_ptr++) = 0x83;
*(ssdt_ptr++) = 0x0B; // Length
*(ssdt_ptr++) = 'C'; // Name (CPUxx)
*(ssdt_ptr++) = 'P';
if ((i & 0xf0) != 0)
*(ssdt_ptr++) = (i >> 4) < 0xa ? (i >> 4) + '0' : (i >> 4) + 'A' - 0xa;
else
*(ssdt_ptr++) = 'U';
*(ssdt_ptr++) = (i & 0xf) < 0xa ? (i & 0xf) + '0' : (i & 0xf) + 'A' - 0xa;
*(ssdt_ptr++) = i;
*(ssdt_ptr++) = 0x10; // Processor block address
*(ssdt_ptr++) = 0xb0;
*(ssdt_ptr++) = 0;
*(ssdt_ptr++) = 0;
*(ssdt_ptr++) = 6; // Processor block length
}
acpi_build_table_header((struct acpi_table_header *)ssdt,
"SSDT", ssdt_ptr - ssdt, 1);
return ssdt_ptr - ssdt;
}
/* base_addr must be a multiple of 4KB */
void acpi_bios_init(void)
{
struct rsdp_descriptor *rsdp;
struct rsdt_descriptor_rev1 *rsdt;
struct fadt_descriptor_rev1 *fadt;
struct facs_descriptor_rev1 *facs;
struct multiple_apic_table *madt;
u8 *dsdt, *ssdt;
u32 base_addr, rsdt_addr, fadt_addr, addr, facs_addr, dsdt_addr, ssdt_addr;
u32 acpi_tables_size, madt_addr, madt_size;
int i;
/* reserve memory space for tables */
#if (CONFIG_USE_EBDA_TABLES == 1)
ebda_cur_addr = align(ebda_cur_addr, 16);
rsdp = (void *)(ebda_cur_addr);
ebda_cur_addr += sizeof(*rsdp);
#else
bios_table_cur_addr = align(bios_table_cur_addr, 16);
rsdp = (void *)(bios_table_cur_addr);
bios_table_cur_addr += sizeof(*rsdp);
#endif
addr = base_addr = GET_EBDA(ram_size) - CONFIG_ACPI_DATA_SIZE;
rsdt_addr = addr;
rsdt = (void *)(addr);
addr += sizeof(*rsdt);
fadt_addr = addr;
fadt = (void *)(addr);
addr += sizeof(*fadt);
/* XXX: FACS should be in RAM */
addr = (addr + 63) & ~63; /* 64 byte alignment for FACS */
facs_addr = addr;
facs = (void *)(addr);
addr += sizeof(*facs);
dsdt_addr = addr;
dsdt = (void *)(addr);
addr += sizeof(AmlCode);
ssdt_addr = addr;
ssdt = (void *)(addr);
addr += acpi_build_processor_ssdt(ssdt);
addr = (addr + 7) & ~7;
madt_addr = addr;
madt_size = sizeof(*madt) +
sizeof(struct madt_processor_apic) * smp_cpus +
sizeof(struct madt_io_apic);
madt = (void *)(addr);
addr += madt_size;
acpi_tables_size = addr - base_addr;
dprintf(1, "ACPI tables: RSDP addr=0x%08lx"
" ACPI DATA addr=0x%08lx size=0x%x\n",
(unsigned long)rsdp,
(unsigned long)rsdt, acpi_tables_size);
/* RSDP */
memset(rsdp, 0, sizeof(*rsdp));
memcpy(rsdp->signature, "RSD PTR ", 8);
#if (CONFIG_QEMU == 1)
memcpy(rsdp->oem_id, "QEMU ", 6);
#else
memcpy(rsdp->oem_id, "BOCHS ", 6);
#endif
rsdp->rsdt_physical_address = cpu_to_le32(rsdt_addr);
rsdp->checksum = -checksum((void *)rsdp, 20);
/* RSDT */
memset(rsdt, 0, sizeof(*rsdt));
rsdt->table_offset_entry[0] = cpu_to_le32(fadt_addr);
rsdt->table_offset_entry[1] = cpu_to_le32(madt_addr);
rsdt->table_offset_entry[2] = cpu_to_le32(ssdt_addr);
acpi_build_table_header((struct acpi_table_header *)rsdt,
"RSDT", sizeof(*rsdt), 1);
/* FADT */
memset(fadt, 0, sizeof(*fadt));
fadt->firmware_ctrl = cpu_to_le32(facs_addr);
fadt->dsdt = cpu_to_le32(dsdt_addr);
fadt->model = 1;
fadt->reserved1 = 0;
fadt->sci_int = cpu_to_le16(pm_sci_int);
fadt->smi_cmd = cpu_to_le32(SMI_CMD_IO_ADDR);
fadt->acpi_enable = 0xf1;
fadt->acpi_disable = 0xf0;
fadt->pm1a_evt_blk = cpu_to_le32(pm_io_base);
fadt->pm1a_cnt_blk = cpu_to_le32(pm_io_base + 0x04);
fadt->pm_tmr_blk = cpu_to_le32(pm_io_base + 0x08);
fadt->pm1_evt_len = 4;
fadt->pm1_cnt_len = 2;
fadt->pm_tmr_len = 4;
fadt->plvl2_lat = cpu_to_le16(0xfff); // C2 state not supported
fadt->plvl3_lat = cpu_to_le16(0xfff); // C3 state not supported
/* WBINVD + PROC_C1 + PWR_BUTTON + SLP_BUTTON + FIX_RTC */
fadt->flags = cpu_to_le32((1 << 0) | (1 << 2) | (1 << 4) | (1 << 5) | (1 << 6));
acpi_build_table_header((struct acpi_table_header *)fadt, "FACP",
sizeof(*fadt), 1);
/* FACS */
memset(facs, 0, sizeof(*facs));
memcpy(facs->signature, "FACS", 4);
facs->length = cpu_to_le32(sizeof(*facs));
/* DSDT */
memcpy(dsdt, AmlCode, sizeof(AmlCode));
/* MADT */
{
struct madt_processor_apic *apic;
struct madt_io_apic *io_apic;
memset(madt, 0, madt_size);
madt->local_apic_address = cpu_to_le32(0xfee00000);
madt->flags = cpu_to_le32(1);
apic = (void *)(madt + 1);
for(i=0;i<smp_cpus;i++) {
apic->type = APIC_PROCESSOR;
apic->length = sizeof(*apic);
apic->processor_id = i;
apic->local_apic_id = i;
apic->flags = cpu_to_le32(1);
apic++;
}
io_apic = (void *)apic;
io_apic->type = APIC_IO;
io_apic->length = sizeof(*io_apic);
io_apic->io_apic_id = smp_cpus;
io_apic->address = cpu_to_le32(0xfec00000);
io_apic->interrupt = cpu_to_le32(0);
acpi_build_table_header((struct acpi_table_header *)madt,
"APIC", madt_size, 1);
}
}
/* SMBIOS entry point -- must be written to a 16-bit aligned address
between 0xf0000 and 0xfffff.
*/
struct smbios_entry_point {
char anchor_string[4];
u8 checksum;
u8 length;
u8 smbios_major_version;
u8 smbios_minor_version;
u16 max_structure_size;
u8 entry_point_revision;
u8 formatted_area[5];
char intermediate_anchor_string[5];
u8 intermediate_checksum;
u16 structure_table_length;
u32 structure_table_address;
u16 number_of_structures;
u8 smbios_bcd_revision;
} __attribute__((__packed__));
/* This goes at the beginning of every SMBIOS structure. */
struct smbios_structure_header {
u8 type;
u8 length;
u16 handle;
} __attribute__((__packed__));
/* SMBIOS type 0 - BIOS Information */
struct smbios_type_0 {
struct smbios_structure_header header;
u8 vendor_str;
u8 bios_version_str;
u16 bios_starting_address_segment;
u8 bios_release_date_str;
u8 bios_rom_size;
u8 bios_characteristics[8];
u8 bios_characteristics_extension_bytes[2];
u8 system_bios_major_release;
u8 system_bios_minor_release;
u8 embedded_controller_major_release;
u8 embedded_controller_minor_release;
} __attribute__((__packed__));
/* SMBIOS type 1 - System Information */
struct smbios_type_1 {
struct smbios_structure_header header;
u8 manufacturer_str;
u8 product_name_str;
u8 version_str;
u8 serial_number_str;
u8 uuid[16];
u8 wake_up_type;
u8 sku_number_str;
u8 family_str;
} __attribute__((__packed__));
/* SMBIOS type 3 - System Enclosure (v2.3) */
struct smbios_type_3 {
struct smbios_structure_header header;
u8 manufacturer_str;
u8 type;
u8 version_str;
u8 serial_number_str;
u8 asset_tag_number_str;
u8 boot_up_state;
u8 power_supply_state;
u8 thermal_state;
u8 security_status;
u32 oem_defined;
u8 height;
u8 number_of_power_cords;
u8 contained_element_count;
// contained elements follow
} __attribute__((__packed__));
/* SMBIOS type 4 - Processor Information (v2.0) */
struct smbios_type_4 {
struct smbios_structure_header header;
u8 socket_designation_str;
u8 processor_type;
u8 processor_family;
u8 processor_manufacturer_str;
u32 processor_id[2];
u8 processor_version_str;
u8 voltage;
u16 external_clock;
u16 max_speed;
u16 current_speed;
u8 status;
u8 processor_upgrade;
} __attribute__((__packed__));
/* SMBIOS type 16 - Physical Memory Array
* Associated with one type 17 (Memory Device).
*/
struct smbios_type_16 {
struct smbios_structure_header header;
u8 location;
u8 use;
u8 error_correction;
u32 maximum_capacity;
u16 memory_error_information_handle;
u16 number_of_memory_devices;
} __attribute__((__packed__));
/* SMBIOS type 17 - Memory Device
* Associated with one type 19
*/
struct smbios_type_17 {
struct smbios_structure_header header;
u16 physical_memory_array_handle;
u16 memory_error_information_handle;
u16 total_width;
u16 data_width;
u16 size;
u8 form_factor;
u8 device_set;
u8 device_locator_str;
u8 bank_locator_str;
u8 memory_type;
u16 type_detail;
} __attribute__((__packed__));
/* SMBIOS type 19 - Memory Array Mapped Address */
struct smbios_type_19 {
struct smbios_structure_header header;
u32 starting_address;
u32 ending_address;
u16 memory_array_handle;
u8 partition_width;
} __attribute__((__packed__));
/* SMBIOS type 20 - Memory Device Mapped Address */
struct smbios_type_20 {
struct smbios_structure_header header;
u32 starting_address;
u32 ending_address;
u16 memory_device_handle;
u16 memory_array_mapped_address_handle;
u8 partition_row_position;
u8 interleave_position;
u8 interleaved_data_depth;
} __attribute__((__packed__));
/* SMBIOS type 32 - System Boot Information */
struct smbios_type_32 {
struct smbios_structure_header header;
u8 reserved[6];
u8 boot_status;
} __attribute__((__packed__));
/* SMBIOS type 127 -- End-of-table */
struct smbios_type_127 {
struct smbios_structure_header header;
} __attribute__((__packed__));
static void
smbios_entry_point_init(void *start,
u16 max_structure_size,
u16 structure_table_length,
u32 structure_table_address,
u16 number_of_structures)
{
struct smbios_entry_point *ep = (struct smbios_entry_point *)start;
memcpy(ep->anchor_string, "_SM_", 4);
ep->length = 0x1f;
ep->smbios_major_version = 2;
ep->smbios_minor_version = 4;
ep->max_structure_size = max_structure_size;
ep->entry_point_revision = 0;
memset(ep->formatted_area, 0, 5);
memcpy(ep->intermediate_anchor_string, "_DMI_", 5);
ep->structure_table_length = structure_table_length;
ep->structure_table_address = structure_table_address;
ep->number_of_structures = number_of_structures;
ep->smbios_bcd_revision = 0x24;
ep->checksum = 0;
ep->intermediate_checksum = 0;
ep->checksum = -checksum(start, 0x10);
ep->intermediate_checksum = -checksum(start + 0x10, ep->length - 0x10);
}
/* Type 0 -- BIOS Information */
#define RELEASE_DATE_STR "01/01/2007"
static void *
smbios_type_0_init(void *start)
{
struct smbios_type_0 *p = (struct smbios_type_0 *)start;
p->header.type = 0;
p->header.length = sizeof(struct smbios_type_0);
p->header.handle = 0;
p->vendor_str = 1;
p->bios_version_str = 1;
p->bios_starting_address_segment = 0xe800;
p->bios_release_date_str = 2;
p->bios_rom_size = 0; /* FIXME */
memset(p->bios_characteristics, 0, 7);
p->bios_characteristics[7] = 0x08; /* BIOS characteristics not supported */
p->bios_characteristics_extension_bytes[0] = 0;
p->bios_characteristics_extension_bytes[1] = 0;
p->system_bios_major_release = 1;
p->system_bios_minor_release = 0;
p->embedded_controller_major_release = 0xff;
p->embedded_controller_minor_release = 0xff;
start += sizeof(struct smbios_type_0);
memcpy((char *)start, CONFIG_APPNAME, sizeof(CONFIG_APPNAME));
start += sizeof(CONFIG_APPNAME);
memcpy((char *)start, RELEASE_DATE_STR, sizeof(RELEASE_DATE_STR));
start += sizeof(RELEASE_DATE_STR);
*((u8 *)start) = 0;
return start+1;
}
/* Type 1 -- System Information */
static void *
smbios_type_1_init(void *start)
{
struct smbios_type_1 *p = (struct smbios_type_1 *)start;
p->header.type = 1;
p->header.length = sizeof(struct smbios_type_1);
p->header.handle = 0x100;
p->manufacturer_str = 0;
p->product_name_str = 0;
p->version_str = 0;
p->serial_number_str = 0;
memcpy(p->uuid, bios_uuid, 16);
p->wake_up_type = 0x06; /* power switch */
p->sku_number_str = 0;
p->family_str = 0;
start += sizeof(struct smbios_type_1);
*((u16 *)start) = 0;
return start+2;
}
/* Type 3 -- System Enclosure */
static void *
smbios_type_3_init(void *start)
{
struct smbios_type_3 *p = (struct smbios_type_3 *)start;
p->header.type = 3;
p->header.length = sizeof(struct smbios_type_3);
p->header.handle = 0x300;
p->manufacturer_str = 0;
p->type = 0x01; /* other */
p->version_str = 0;
p->serial_number_str = 0;
p->asset_tag_number_str = 0;
p->boot_up_state = 0x03; /* safe */
p->power_supply_state = 0x03; /* safe */
p->thermal_state = 0x03; /* safe */
p->security_status = 0x02; /* unknown */
p->oem_defined = 0;
p->height = 0;
p->number_of_power_cords = 0;
p->contained_element_count = 0;
start += sizeof(struct smbios_type_3);
*((u16 *)start) = 0;
return start+2;
}
/* Type 4 -- Processor Information */
static void *
smbios_type_4_init(void *start, unsigned int cpu_number)
{
struct smbios_type_4 *p = (struct smbios_type_4 *)start;
p->header.type = 4;
p->header.length = sizeof(struct smbios_type_4);
p->header.handle = 0x400 + cpu_number;
p->socket_designation_str = 1;
p->processor_type = 0x03; /* CPU */
p->processor_family = 0x01; /* other */
p->processor_manufacturer_str = 0;
p->processor_id[0] = cpuid_signature;
p->processor_id[1] = cpuid_features;
p->processor_version_str = 0;
p->voltage = 0;
p->external_clock = 0;
p->max_speed = 0; /* unknown */
p->current_speed = 0; /* unknown */
p->status = 0x41; /* socket populated, CPU enabled */
p->processor_upgrade = 0x01; /* other */
start += sizeof(struct smbios_type_4);
memcpy((char *)start, "CPU " "\0" "" "\0" "", 7);
((char *)start)[4] = cpu_number + '0';
return start+7;
}
/* Type 16 -- Physical Memory Array */
static void *
smbios_type_16_init(void *start, u32 memsize)
{
struct smbios_type_16 *p = (struct smbios_type_16*)start;
p->header.type = 16;
p->header.length = sizeof(struct smbios_type_16);
p->header.handle = 0x1000;
p->location = 0x01; /* other */
p->use = 0x03; /* system memory */
p->error_correction = 0x01; /* other */
p->maximum_capacity = memsize * 1024;
p->memory_error_information_handle = 0xfffe; /* none provided */
p->number_of_memory_devices = 1;
start += sizeof(struct smbios_type_16);
*((u16 *)start) = 0;
return start + 2;
}
/* Type 17 -- Memory Device */
static void *
smbios_type_17_init(void *start, u32 memory_size_mb)
{
struct smbios_type_17 *p = (struct smbios_type_17 *)start;
p->header.type = 17;
p->header.length = sizeof(struct smbios_type_17);
p->header.handle = 0x1100;
p->physical_memory_array_handle = 0x1000;
p->total_width = 64;
p->data_width = 64;
/* truncate memory_size_mb to 16 bits and clear most significant
bit [indicates size in MB] */
p->size = (u16) memory_size_mb & 0x7fff;
p->form_factor = 0x09; /* DIMM */
p->device_set = 0;
p->device_locator_str = 1;
p->bank_locator_str = 0;
p->memory_type = 0x07; /* RAM */
p->type_detail = 0;
start += sizeof(struct smbios_type_17);
memcpy((char *)start, "DIMM 1", 7);
start += 7;
*((u8 *)start) = 0;
return start+1;
}
/* Type 19 -- Memory Array Mapped Address */
static void *
smbios_type_19_init(void *start, u32 memory_size_mb)
{
struct smbios_type_19 *p = (struct smbios_type_19 *)start;
p->header.type = 19;
p->header.length = sizeof(struct smbios_type_19);
p->header.handle = 0x1300;
p->starting_address = 0;
p->ending_address = (memory_size_mb-1) * 1024;
p->memory_array_handle = 0x1000;
p->partition_width = 1;
start += sizeof(struct smbios_type_19);
*((u16 *)start) = 0;
return start + 2;
}
/* Type 20 -- Memory Device Mapped Address */
static void *
smbios_type_20_init(void *start, u32 memory_size_mb)
{
struct smbios_type_20 *p = (struct smbios_type_20 *)start;
p->header.type = 20;
p->header.length = sizeof(struct smbios_type_20);
p->header.handle = 0x1400;
p->starting_address = 0;
p->ending_address = (memory_size_mb-1)*1024;
p->memory_device_handle = 0x1100;
p->memory_array_mapped_address_handle = 0x1300;
p->partition_row_position = 1;
p->interleave_position = 0;
p->interleaved_data_depth = 0;
start += sizeof(struct smbios_type_20);
*((u16 *)start) = 0;
return start+2;
}
/* Type 32 -- System Boot Information */
static void *
smbios_type_32_init(void *start)
{
struct smbios_type_32 *p = (struct smbios_type_32 *)start;
p->header.type = 32;
p->header.length = sizeof(struct smbios_type_32);
p->header.handle = 0x2000;
memset(p->reserved, 0, 6);
p->boot_status = 0; /* no errors detected */
start += sizeof(struct smbios_type_32);
*((u16 *)start) = 0;
return start+2;
}
/* Type 127 -- End of Table */
static void *
smbios_type_127_init(void *start)
{
struct smbios_type_127 *p = (struct smbios_type_127 *)start;
p->header.type = 127;
p->header.length = sizeof(struct smbios_type_127);
p->header.handle = 0x7f00;
start += sizeof(struct smbios_type_127);
*((u16 *)start) = 0;
return start + 2;
}
void smbios_init(void)
{
unsigned cpu_num, nr_structs = 0, max_struct_size = 0;
char *start, *p, *q;
int memsize = GET_EBDA(ram_size) / (1024 * 1024);
#if (CONFIG_USE_EBDA_TABLES == 1)
ebda_cur_addr = align(ebda_cur_addr, 16);
start = (void *)(ebda_cur_addr);
#else
bios_table_cur_addr = align(bios_table_cur_addr, 16);
start = (void *)(bios_table_cur_addr);
#endif
p = (char *)start + sizeof(struct smbios_entry_point);
#define add_struct(fn) { \
q = (fn); \
nr_structs++; \
if ((q - p) > max_struct_size) \
max_struct_size = q - p; \
p = q; \
}
add_struct(smbios_type_0_init(p));
add_struct(smbios_type_1_init(p));
add_struct(smbios_type_3_init(p));
for (cpu_num = 1; cpu_num <= smp_cpus; cpu_num++)
add_struct(smbios_type_4_init(p, cpu_num));
add_struct(smbios_type_16_init(p, memsize));
add_struct(smbios_type_17_init(p, memsize));
add_struct(smbios_type_19_init(p, memsize));
add_struct(smbios_type_20_init(p, memsize));
add_struct(smbios_type_32_init(p));
add_struct(smbios_type_127_init(p));
#undef add_struct
smbios_entry_point_init(
start, max_struct_size,
(p - (char *)start) - sizeof(struct smbios_entry_point),
(u32)(start + sizeof(struct smbios_entry_point)),
nr_structs);
#if (CONFIG_USE_EBDA_TABLES == 1)
ebda_cur_addr += (p - (char *)start);
#else
bios_table_cur_addr += (p - (char *)start);
#endif
dprintf(1, "SMBIOS table addr=0x%08lx\n", (unsigned long)start);
}
void rombios32_init(void)
{
if (CONFIG_COREBOOT)
// XXX - not supported on coreboot yet.
return;
dprintf(1, "Starting rombios32\n");
#if (CONFIG_USE_EBDA_TABLES == 1)
ebda_cur_addr = ((*(u16 *)(0x40e)) << 4) + 0x380;
dprintf(1, "ebda_cur_addr: 0x%08lx\n", ebda_cur_addr);
#endif
bios_table_cur_addr = 0xf0000 | OFFSET_freespace2_start;
bios_table_end_addr = 0xf0000 | OFFSET_freespace2_end;
dprintf(1, "bios_table_addr: 0x%08lx end=0x%08lx\n",
bios_table_cur_addr, bios_table_end_addr);
cpu_probe();
smp_probe();
pci_bios_init();
if (bios_table_cur_addr != 0) {
mptable_init();
uuid_probe();
smbios_init();
if (acpi_enabled)
acpi_bios_init();
dprintf(1, "bios_table_cur_addr: 0x%08lx\n", bios_table_cur_addr);
if (bios_table_cur_addr > bios_table_end_addr)
BX_PANIC("bios_table_end_addr overflow!\n");
}
}