blob: 04b0a439f27043df548ec0f35296f6bdce63789a [file] [log] [blame]
// Low level ATA disk access
//
// Copyright (C) 2008 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "ata.h" // ATA_*
#include "types.h" // u8
#include "ioport.h" // inb
#include "util.h" // dprintf
#include "cmos.h" // inb_cmos
#include "pic.h" // unmask_pic2
#include "biosvar.h" // GET_EBDA
#define TIMEOUT 0
#define BSY 1
#define NOT_BSY 2
#define NOT_BSY_DRQ 3
#define NOT_BSY_NOT_DRQ 4
#define NOT_BSY_RDY 5
#define IDE_SECTOR_SIZE 512
#define CDROM_SECTOR_SIZE 2048
#define IDE_TIMEOUT 32000u //32 seconds max for IDE ops
/****************************************************************
* Helper functions
****************************************************************/
// Wait for the specified ide state
static int
await_ide(u8 when_done, u16 base, u16 timeout)
{
u32 time=0, last=0;
for (;;) {
u8 status = inb(base+ATA_CB_STAT);
time++;
u8 result = 0;
if (when_done == BSY)
result = status & ATA_CB_STAT_BSY;
else if (when_done == NOT_BSY)
result = !(status & ATA_CB_STAT_BSY);
else if (when_done == NOT_BSY_DRQ)
result = !(status & ATA_CB_STAT_BSY) && (status & ATA_CB_STAT_DRQ);
else if (when_done == NOT_BSY_NOT_DRQ)
result = !(status & ATA_CB_STAT_BSY) && !(status & ATA_CB_STAT_DRQ);
else if (when_done == NOT_BSY_RDY)
result = !(status & ATA_CB_STAT_BSY) && (status & ATA_CB_STAT_RDY);
if (result)
return status;
// mod 2048 each 16 ms
if (time>>16 != last) {
last = time >>16;
dprintf(6, "await_ide: (TIMEOUT,BSY,!BSY,!BSY_DRQ"
",!BSY_!DRQ,!BSY_RDY) %d time= %d timeout= %d\n"
, when_done, time>>11, timeout);
}
if (status & ATA_CB_STAT_ERR) {
dprintf(1, "await_ide: ERROR (TIMEOUT,BSY,!BSY,!BSY_DRQ"
",!BSY_!DRQ,!BSY_RDY) %d status=%x time= %d timeout= %d\n"
, when_done, status, time>>11, timeout);
return -1;
}
if (timeout == 0 || (time>>11) > timeout)
break;
}
dprintf(1, "IDE time out\n");
return -2;
}
// Wait for ide state - pauses for one ata cycle first.
static __always_inline int
pause_await_ide(u8 when_done, u16 iobase1, u16 iobase2, u16 timeout)
{
// Wait one PIO transfer cycle.
inb(iobase2 + ATA_CB_ASTAT);
return await_ide(when_done, iobase1, timeout);
}
// Delay for x nanoseconds
static void
nsleep(u32 delay)
{
// XXX - how to implement ndelay?
while (delay--)
nop();
}
// Wait for ide state - pause for 400ns first.
static __always_inline int
ndelay_await_ide(u8 when_done, u16 iobase1, u16 timeout)
{
nsleep(400);
return await_ide(when_done, iobase1, timeout);
}
// Delay for x milliseconds
static void
msleep(u32 delay)
{
usleep(delay * 1000);
}
// Reset a drive
void
ata_reset(int driveid)
{
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 iobase1 = GET_EBDA(ata.channels[channel].iobase1);
u16 iobase2 = GET_EBDA(ata.channels[channel].iobase2);
// Reset
// 8.2.1 (a) -- set SRST in DC
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST, iobase2+ATA_CB_DC);
// 8.2.1 (b) -- wait for BSY
int status = await_ide(BSY, iobase1, 20);
dprintf(6, "ata_reset(1) status=%x\n", status);
// 8.2.1 (f) -- clear SRST
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC);
// 8.2.1 (g) -- check for sc==sn==0x01
// select device
outb(slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0, iobase1+ATA_CB_DH);
msleep(50);
u8 sc = inb(iobase1+ATA_CB_SC);
u8 sn = inb(iobase1+ATA_CB_SN);
// For predetermined ATA drives - wait for ready.
if (sc==0x01 && sn==0x01) {
u8 type=GET_EBDA(ata.devices[driveid].type);
if (type == ATA_TYPE_ATA)
await_ide(NOT_BSY_RDY, iobase1, IDE_TIMEOUT);
}
// 8.2.1 (h) -- wait for not BSY
status = await_ide(NOT_BSY, iobase1, IDE_TIMEOUT);
dprintf(6, "ata_reset(2) status=%x\n", status);
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
}
/****************************************************************
* ATA send command
****************************************************************/
struct ata_op_s {
u64 lba;
void *far_buffer;
u16 driveid;
u16 count;
};
struct ata_pio_command {
u8 feature;
u8 sector_count;
u8 lba_low;
u8 lba_mid;
u8 lba_high;
u8 device;
u8 command;
u8 sector_count2;
u8 lba_low2;
u8 lba_mid2;
u8 lba_high2;
};
// Send an ata command to the drive.
static int
send_cmd(int driveid, struct ata_pio_command *cmd)
{
u8 channel = driveid / 2;
u16 iobase1 = GET_EBDA(ata.channels[channel].iobase1);
u16 iobase2 = GET_EBDA(ata.channels[channel].iobase2);
int status = inb(iobase1 + ATA_CB_STAT);
if (status & ATA_CB_STAT_BSY)
return -3;
// Disable interrupts
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC);
// Select device
u8 device = inb(iobase1 + ATA_CB_DH);
outb(cmd->device, iobase1 + ATA_CB_DH);
if ((device ^ cmd->device) & (1 << 4))
// Wait for device to become active.
msleep(50);
if (cmd->command & 0x04) {
outb(0x00, iobase1 + ATA_CB_FR);
outb(cmd->sector_count2, iobase1 + ATA_CB_SC);
outb(cmd->lba_low2, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid2, iobase1 + ATA_CB_CL);
outb(cmd->lba_high2, iobase1 + ATA_CB_CH);
}
outb(cmd->feature, iobase1 + ATA_CB_FR);
outb(cmd->sector_count, iobase1 + ATA_CB_SC);
outb(cmd->lba_low, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid, iobase1 + ATA_CB_CL);
outb(cmd->lba_high, iobase1 + ATA_CB_CH);
outb(cmd->command, iobase1 + ATA_CB_CMD);
status = ndelay_await_ide(NOT_BSY_DRQ, iobase1, IDE_TIMEOUT);
if (status < 0)
return status;
if (status & ATA_CB_STAT_ERR) {
dprintf(6, "send_cmd : read error\n");
return -4;
}
if (!(status & ATA_CB_STAT_DRQ)) {
dprintf(6, "send_cmd : DRQ not set (status %02x)\n"
, (unsigned) status);
return -5;
}
return 0;
}
/****************************************************************
* ATA transfers
****************************************************************/
// Read and discard x number of bytes from an io channel.
static void
insx_discard(int mode, int iobase1, int bytes)
{
int count, i;
if (mode == ATA_MODE_PIO32) {
count = bytes / 4;
for (i=0; i<count; i++)
inl(iobase1);
} else {
count = bytes / 2;
for (i=0; i<count; i++)
inw(iobase1);
}
}
// Transfer 'count' blocks (of 'blocksize' bytes) to/from drive
// 'driveid'. If 'skipfirst' or 'skiplast' is set then the first
// and/or last block may be partially transferred. This function is
// inlined because all the callers use different forms and because the
// large number of parameters would consume a lot of stack space.
static __always_inline int
ata_transfer(int driveid, int iswrite, int count, int blocksize
, int skipfirst, int skiplast, void *far_buffer)
{
dprintf(16, "ata_transfer id=%d write=%d count=%d bs=%d"
" skipf=%d skipl=%d buf=%p\n"
, driveid, iswrite, count, blocksize
, skipfirst, skiplast, far_buffer);
// Reset count of transferred data
SET_EBDA(ata.trsfsectors, 0);
u8 channel = driveid / 2;
u16 iobase1 = GET_EBDA(ata.channels[channel].iobase1);
u16 iobase2 = GET_EBDA(ata.channels[channel].iobase2);
u8 mode = GET_EBDA(ata.devices[driveid].mode);
int current = 0;
int status;
for (;;) {
int bsize = blocksize;
if (skipfirst && current == 0) {
insx_discard(mode, iobase1, skipfirst);
bsize -= skipfirst;
}
if (skiplast && current == count-1)
bsize -= skiplast;
if (iswrite) {
// Write data to controller
dprintf(16, "Write sector id=%d dest=%p\n", driveid, far_buffer);
if (mode == ATA_MODE_PIO32)
outsl_far(iobase1, far_buffer, bsize / 4);
else
outsw_far(iobase1, far_buffer, bsize / 2);
} else {
// Read data from controller
dprintf(16, "Read sector id=%d dest=%p\n", driveid, far_buffer);
if (mode == ATA_MODE_PIO32)
insl_far(iobase1, far_buffer, bsize / 4);
else
insw_far(iobase1, far_buffer, bsize / 2);
}
far_buffer += bsize;
if (skiplast && current == count-1)
insx_discard(mode, iobase1, skiplast);
status = pause_await_ide(NOT_BSY, iobase1, iobase2, IDE_TIMEOUT);
if (status < 0)
// Error
return status;
current++;
SET_EBDA(ata.trsfsectors, current);
if (current == count)
break;
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_RDY | ATA_CB_STAT_DRQ
| ATA_CB_STAT_ERR);
if (status != (ATA_CB_STAT_RDY | ATA_CB_STAT_DRQ)) {
dprintf(6, "ata_transfer : more sectors left (status %02x)\n"
, (unsigned) status);
return -6;
}
}
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_RDY | ATA_CB_STAT_DF
| ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR);
if (!iswrite)
status &= ~ATA_CB_STAT_DF;
if (status != ATA_CB_STAT_RDY ) {
dprintf(6, "ata_transfer : no sectors left (status %02x)\n"
, (unsigned) status);
return -7;
}
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
return 0;
}
static noinline int
ata_transfer_disk(const struct ata_op_s *op, int iswrite)
{
return ata_transfer(op->driveid, iswrite, op->count, IDE_SECTOR_SIZE
, 0, 0, op->far_buffer);
}
static noinline int
ata_transfer_cdrom(const struct ata_op_s *op)
{
return ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE
, 0, 0, op->far_buffer);
}
static noinline int
ata_transfer_emu(const struct ata_op_s *op, int before, int after)
{
int vcount = op->count * 4 - before - after;
int ret = ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE
, before*512, after*512, op->far_buffer);
if (ret) {
SET_EBDA(ata.trsfsectors, 0);
return ret;
}
SET_EBDA(ata.trsfsectors, vcount);
return 0;
}
/****************************************************************
* ATA hard drive functions
****************************************************************/
static noinline int
send_cmd_disk(const struct ata_op_s *op, u16 command)
{
u8 slave = op->driveid % 2;
u64 lba = op->lba;
struct ata_pio_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.command = command;
if (op->count >= (1<<8) || lba + op->count >= (1<<28)) {
cmd.sector_count2 = op->count >> 8;
cmd.lba_low2 = lba >> 24;
cmd.lba_mid2 = lba >> 32;
cmd.lba_high2 = lba >> 40;
cmd.command |= 0x04;
lba &= 0xffffff;
}
cmd.feature = 0;
cmd.sector_count = op->count;
cmd.lba_low = lba;
cmd.lba_mid = lba >> 8;
cmd.lba_high = lba >> 16;
cmd.device = ((slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0)
| ((lba >> 24) & 0xf) | ATA_CB_DH_LBA);
return send_cmd(op->driveid, &cmd);
}
// Read/write count blocks from a harddrive.
__always_inline int
ata_cmd_data(int driveid, u16 command, u64 lba, u16 count, void *far_buffer)
{
struct ata_op_s op;
op.driveid = driveid;
op.lba = lba;
op.count = count;
op.far_buffer = far_buffer;
int ret = send_cmd_disk(&op, command);
if (ret)
return ret;
int iswrite = command == ATA_CMD_WRITE_SECTORS;
return ata_transfer_disk(&op, iswrite);
}
/****************************************************************
* ATAPI functions
****************************************************************/
// Low-level atapi command transmit function.
static __always_inline int
send_atapi_cmd(int driveid, u8 *cmdbuf, u8 cmdlen, u16 blocksize)
{
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 iobase1 = GET_EBDA(ata.channels[channel].iobase1);
u16 iobase2 = GET_EBDA(ata.channels[channel].iobase2);
struct ata_pio_command cmd;
cmd.sector_count = 0;
cmd.feature = 0;
cmd.lba_low = 0;
cmd.lba_mid = blocksize;
cmd.lba_high = blocksize >> 8;
cmd.device = slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0;
cmd.command = ATA_CMD_PACKET;
int ret = send_cmd(driveid, &cmd);
if (ret)
return ret;
// Send command to device
outsw_far(iobase1, MAKE_FARPTR(GET_SEG(SS), (u32)cmdbuf), cmdlen / 2);
int status = pause_await_ide(NOT_BSY_DRQ, iobase1, iobase2, IDE_TIMEOUT);
if (status < 0)
return status;
return 0;
}
// Low-level cdrom read atapi command transmit function.
static int
send_cmd_cdrom(const struct ata_op_s *op)
{
u8 atacmd[12];
memset(atacmd, 0, sizeof(atacmd));
atacmd[0]=0x28; // READ command
atacmd[7]=(op->count & 0xff00) >> 8; // Sectors
atacmd[8]=(op->count & 0x00ff);
atacmd[2]=(op->lba & 0xff000000) >> 24; // LBA
atacmd[3]=(op->lba & 0x00ff0000) >> 16;
atacmd[4]=(op->lba & 0x0000ff00) >> 8;
atacmd[5]=(op->lba & 0x000000ff);
return send_atapi_cmd(op->driveid, atacmd, sizeof(atacmd)
, CDROM_SECTOR_SIZE);
}
// Read sectors from the cdrom.
__always_inline int
cdrom_read(int driveid, u32 lba, u32 count, void *far_buffer)
{
struct ata_op_s op;
op.driveid = driveid;
op.lba = lba;
op.count = count;
op.far_buffer = far_buffer;
int ret = send_cmd_cdrom(&op);
if (ret)
return ret;
return ata_transfer_cdrom(&op);
}
// Pretend the cdrom has 512 byte sectors (instead of 2048) and read
// sectors.
__always_inline int
cdrom_read_512(int driveid, u32 vlba, u32 vcount, void *far_buffer)
{
u32 velba = vlba + vcount - 1;
u32 lba = vlba / 4;
u32 elba = velba / 4;
int count = elba - lba + 1;
int before = vlba % 4;
int after = 3 - (velba % 4);
struct ata_op_s op;
op.driveid = driveid;
op.lba = lba;
op.count = count;
op.far_buffer = far_buffer;
dprintf(16, "cdrom_read_512: id=%d vlba=%d vcount=%d buf=%p lba=%d elba=%d"
" count=%d before=%d after=%d\n"
, driveid, vlba, vcount, far_buffer, lba, elba
, count, before, after);
int ret = send_cmd_cdrom(&op);
if (ret)
return ret;
return ata_transfer_emu(&op, before, after);
}
// Send a simple atapi command to a drive.
int
ata_cmd_packet(int driveid, u8 *cmdbuf, u8 cmdlen
, u32 length, void *far_buffer)
{
int ret = send_atapi_cmd(driveid, cmdbuf, cmdlen, length);
if (ret)
return ret;
return ata_transfer(driveid, 0, 1, length, 0, 0, far_buffer);
}
/****************************************************************
* ATA detect and init
****************************************************************/
static void
report_model(int driveid, u8 *buffer)
{
u8 model[41];
// Read model name
int i;
for (i=0; i<40; i+=2) {
model[i] = buffer[i+54+1];
model[i+1] = buffer[i+54];
}
// Reformat
model[40] = 0x00;
for (i=39; i>0; i--) {
if (model[i] != 0x20)
break;
model[i] = 0x00;
}
u8 channel = driveid / 2;
u8 slave = driveid % 2;
// XXX - model on stack not %cs
printf("ata%d %s: %s", channel, slave ? " slave" : "master", model);
}
static u8
get_ata_version(u8 *buffer)
{
u16 ataversion = *(u16*)&buffer[160];
u8 version;
for (version=15; version>0; version--)
if (ataversion & (1<<version))
break;
return version;
}
static void
init_drive_atapi(int driveid)
{
SET_EBDA(ata.devices[driveid].type,ATA_TYPE_ATAPI);
// Temporary values to do the transfer
SET_EBDA(ata.devices[driveid].device,ATA_DEVICE_CDROM);
SET_EBDA(ata.devices[driveid].mode, ATA_MODE_PIO16);
// Now we send a IDENTIFY command to ATAPI device
u8 buffer[0x0200];
memset(buffer, 0, sizeof(buffer));
u16 ret = ata_cmd_data(driveid, ATA_CMD_IDENTIFY_DEVICE_PACKET
, 1, 1
, MAKE_FARPTR(GET_SEG(SS), (u32)buffer));
if (ret != 0)
BX_PANIC("ata-detect: Failed to detect ATAPI device\n");
u8 type = buffer[1] & 0x1f;
u8 removable = (buffer[0] & 0x80) ? 1 : 0;
u8 mode = buffer[96] ? ATA_MODE_PIO32 : ATA_MODE_PIO16;
u16 blksize = CDROM_SECTOR_SIZE;
SET_EBDA(ata.devices[driveid].device, type);
SET_EBDA(ata.devices[driveid].removable, removable);
SET_EBDA(ata.devices[driveid].mode, mode);
SET_EBDA(ata.devices[driveid].blksize, blksize);
// fill cdidmap
u8 cdcount = GET_EBDA(ata.cdcount);
SET_EBDA(ata.idmap[1][cdcount], driveid);
SET_EBDA(ata.cdcount, ++cdcount);
report_model(driveid, buffer);
u8 version = get_ata_version(buffer);
if (GET_EBDA(ata.devices[driveid].device)==ATA_DEVICE_CDROM)
printf(" ATAPI-%d CD-Rom/DVD-Rom\n", version);
else
printf(" ATAPI-%d Device\n", version);
}
static void
fill_fdpt(int driveid)
{
if (driveid > 1)
return;
u16 nlc = GET_EBDA(ata.devices[driveid].lchs.cylinders);
u16 nlh = GET_EBDA(ata.devices[driveid].lchs.heads);
u16 nlspt = GET_EBDA(ata.devices[driveid].lchs.spt);
u16 npc = GET_EBDA(ata.devices[driveid].pchs.cylinders);
u16 nph = GET_EBDA(ata.devices[driveid].pchs.heads);
u16 npspt = GET_EBDA(ata.devices[driveid].pchs.spt);
SET_EBDA(fdpt[driveid].precompensation, 0xffff);
SET_EBDA(fdpt[driveid].drive_control_byte, 0xc0 | ((nph > 8) << 3));
SET_EBDA(fdpt[driveid].landing_zone, npc);
SET_EBDA(fdpt[driveid].cylinders, nlc);
SET_EBDA(fdpt[driveid].heads, nlh);
SET_EBDA(fdpt[driveid].sectors, nlspt);
if (nlc == npc && nlh == nph && nlspt == npspt)
// no logical CHS mapping used, just physical CHS
// use Standard Fixed Disk Parameter Table (FDPT)
return;
// complies with Phoenix style Translated Fixed Disk Parameter
// Table (FDPT)
SET_EBDA(fdpt[driveid].phys_cylinders, npc);
SET_EBDA(fdpt[driveid].phys_heads, nph);
SET_EBDA(fdpt[driveid].phys_sectors, npspt);
SET_EBDA(fdpt[driveid].a0h_signature, 0xa0);
// Checksum structure.
u8 *p = MAKE_FARPTR(SEG_EBDA, offsetof(struct extended_bios_data_area_s
, fdpt[driveid]));
u8 sum = checksum(p, FIELD_SIZEOF(struct extended_bios_data_area_s
, fdpt[driveid]) - 1);
SET_EBDA(fdpt[driveid].checksum, -sum);
}
static u8
get_translation(int driveid)
{
if (! CONFIG_COREBOOT) {
// Emulators pass in the translation info via nvram.
u8 channel = driveid / 2;
u8 translation = inb_cmos(CMOS_BIOS_DISKTRANSFLAG + channel/2);
translation >>= 2 * (driveid % 4);
translation &= 0x03;
return translation;
}
// On COREBOOT, use a heuristic to determine translation type.
u16 heads = GET_EBDA(ata.devices[driveid].pchs.heads);
u16 cylinders = GET_EBDA(ata.devices[driveid].pchs.cylinders);
u16 spt = GET_EBDA(ata.devices[driveid].pchs.spt);
if (cylinders <= 1024 && heads <= 16 && spt <= 63)
return ATA_TRANSLATION_NONE;
if (cylinders * heads <= 131072)
return ATA_TRANSLATION_LARGE;
return ATA_TRANSLATION_LBA;
}
static void
setup_translation(int driveid)
{
u8 translation = get_translation(driveid);
SET_EBDA(ata.devices[driveid].translation, translation);
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 heads = GET_EBDA(ata.devices[driveid].pchs.heads);
u16 cylinders = GET_EBDA(ata.devices[driveid].pchs.cylinders);
u16 spt = GET_EBDA(ata.devices[driveid].pchs.spt);
u64 sectors = GET_EBDA(ata.devices[driveid].sectors);
dprintf(1, "ata%d-%d: PCHS=%u/%d/%d translation="
, channel, slave, cylinders, heads, spt);
switch (translation) {
case ATA_TRANSLATION_NONE:
dprintf(1, "none");
break;
case ATA_TRANSLATION_LBA:
dprintf(1, "lba");
spt = 63;
if (sectors > 63*255*1024) {
heads = 255;
cylinders = 1024;
break;
}
u32 sect = (u32)sectors / 63;
heads = sect / 1024;
if (heads>128)
heads = 255;
else if (heads>64)
heads = 128;
else if (heads>32)
heads = 64;
else if (heads>16)
heads = 32;
else
heads = 16;
cylinders = sect / heads;
break;
case ATA_TRANSLATION_RECHS:
dprintf(1, "r-echs");
// Take care not to overflow
if (heads==16) {
if (cylinders>61439)
cylinders=61439;
heads=15;
cylinders = (u16)((u32)(cylinders)*16/15);
}
// then go through the large bitshift process
case ATA_TRANSLATION_LARGE:
if (translation == ATA_TRANSLATION_LARGE)
dprintf(1, "large");
while (cylinders > 1024) {
cylinders >>= 1;
heads <<= 1;
// If we max out the head count
if (heads > 127)
break;
}
break;
}
// clip to 1024 cylinders in lchs
if (cylinders > 1024)
cylinders = 1024;
dprintf(1, " LCHS=%d/%d/%d\n", cylinders, heads, spt);
SET_EBDA(ata.devices[driveid].lchs.heads, heads);
SET_EBDA(ata.devices[driveid].lchs.cylinders, cylinders);
SET_EBDA(ata.devices[driveid].lchs.spt, spt);
}
static void
init_drive_ata(int driveid)
{
SET_EBDA(ata.devices[driveid].type, ATA_TYPE_ATA);
// Temporary values to do the transfer
SET_EBDA(ata.devices[driveid].device, ATA_DEVICE_HD);
SET_EBDA(ata.devices[driveid].mode, ATA_MODE_PIO16);
// Now we send a IDENTIFY command to ATA device
u8 buffer[0x0200];
memset(buffer, 0, sizeof(buffer));
u16 ret = ata_cmd_data(driveid, ATA_CMD_IDENTIFY_DEVICE
, 1, 1
, MAKE_FARPTR(GET_SEG(SS), (u32)buffer));
if (ret)
BX_PANIC("ata-detect: Failed to detect ATA device\n");
u8 removable = (buffer[0] & 0x80) ? 1 : 0;
u8 mode = buffer[96] ? ATA_MODE_PIO32 : ATA_MODE_PIO16;
u16 blksize = *(u16*)&buffer[10];
u16 cylinders = *(u16*)&buffer[1*2]; // word 1
u16 heads = *(u16*)&buffer[3*2]; // word 3
u16 spt = *(u16*)&buffer[6*2]; // word 6
u64 sectors;
if (*(u16*)&buffer[83*2] & (1 << 10)) // word 83 - lba48 support
sectors = *(u64*)&buffer[100*2]; // word 100-103
else
sectors = *(u32*)&buffer[60*2]; // word 60 and word 61
SET_EBDA(ata.devices[driveid].device, ATA_DEVICE_HD);
SET_EBDA(ata.devices[driveid].removable, removable);
SET_EBDA(ata.devices[driveid].mode, mode);
SET_EBDA(ata.devices[driveid].blksize, blksize);
SET_EBDA(ata.devices[driveid].pchs.heads, heads);
SET_EBDA(ata.devices[driveid].pchs.cylinders, cylinders);
SET_EBDA(ata.devices[driveid].pchs.spt, spt);
SET_EBDA(ata.devices[driveid].sectors, sectors);
// Setup disk geometry translation.
setup_translation(driveid);
// fill hdidmap
u8 hdcount = GET_EBDA(ata.hdcount);
SET_EBDA(ata.idmap[0][hdcount], driveid);
SET_EBDA(ata.hdcount, ++hdcount);
// Fill "fdpt" structure.
fill_fdpt(driveid);
// Report drive info to user.
u64 sizeinmb = GET_EBDA(ata.devices[driveid].sectors) >> 11;
report_model(driveid, buffer);
u8 version = get_ata_version(buffer);
if (sizeinmb < (1 << 16))
printf(" ATA-%d Hard-Disk (%u MiBytes)\n", version, (u32)sizeinmb);
else
printf(" ATA-%d Hard-Disk (%u GiBytes)\n", version
, (u32)(sizeinmb >> 10));
}
static void
init_drive_unknown(int driveid)
{
SET_EBDA(ata.devices[driveid].type,ATA_TYPE_UNKNOWN);
u8 channel = driveid / 2;
u8 slave = driveid % 2;
printf("ata%d %s: Unknown device\n", channel, slave ? " slave" : "master");
}
static void
ata_detect()
{
// Device detection
int driveid;
for(driveid=0; driveid<CONFIG_MAX_ATA_DEVICES; driveid++) {
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 iobase1 = GET_EBDA(ata.channels[channel].iobase1);
u16 iobase2 = GET_EBDA(ata.channels[channel].iobase2);
// Disable interrupts
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC);
// Look for device
outb(slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0, iobase1+ATA_CB_DH);
msleep(50);
outb(0x55, iobase1+ATA_CB_SC);
outb(0xaa, iobase1+ATA_CB_SN);
outb(0xaa, iobase1+ATA_CB_SC);
outb(0x55, iobase1+ATA_CB_SN);
outb(0x55, iobase1+ATA_CB_SC);
outb(0xaa, iobase1+ATA_CB_SN);
// If we found something
u8 sc = inb(iobase1+ATA_CB_SC);
u8 sn = inb(iobase1+ATA_CB_SN);
dprintf(6, "ata_detect(1) drive=%d sc=%x sn=%x\n", driveid, sc, sn);
if (sc != 0x55 || sn != 0xaa)
continue;
// reset the channel
ata_reset(driveid);
// check for ATA or ATAPI
outb(slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0, iobase1+ATA_CB_DH);
msleep(50);
sc = inb(iobase1+ATA_CB_SC);
sn = inb(iobase1+ATA_CB_SN);
dprintf(6, "ata_detect(2) drive=%d sc=%x sn=%x\n", driveid, sc, sn);
if (sc!=0x01 || sn!=0x01) {
init_drive_unknown(driveid);
continue;
}
u8 cl = inb(iobase1+ATA_CB_CL);
u8 ch = inb(iobase1+ATA_CB_CH);
u8 st = inb(iobase1+ATA_CB_STAT);
dprintf(6, "ata_detect(3) drive=%d sc=%x sn=%x cl=%x ch=%x st=%x\n"
, driveid, sc, sn, cl, ch, st);
if (cl==0x14 && ch==0xeb)
init_drive_atapi(driveid);
else if (cl==0x00 && ch==0x00 && st!=0x00)
init_drive_ata(driveid);
else if (cl==0xff && ch==0xff)
// None
continue;
else
init_drive_unknown(driveid);
}
printf("\n");
}
static void
ata_init()
{
// hdidmap and cdidmap init.
u8 device;
for (device=0; device < CONFIG_MAX_ATA_DEVICES; device++) {
SET_EBDA(ata.idmap[0][device], CONFIG_MAX_ATA_DEVICES);
SET_EBDA(ata.idmap[1][device], CONFIG_MAX_ATA_DEVICES);
}
#if CONFIG_MAX_ATA_INTERFACES > 0
SET_EBDA(ata.channels[0].iface, ATA_IFACE_ISA);
SET_EBDA(ata.channels[0].iobase1, 0x1f0);
SET_EBDA(ata.channels[0].iobase2, 0x3f0);
SET_EBDA(ata.channels[0].irq, 14);
#endif
#if CONFIG_MAX_ATA_INTERFACES > 1
SET_EBDA(ata.channels[1].iface, ATA_IFACE_ISA);
SET_EBDA(ata.channels[1].iobase1, 0x170);
SET_EBDA(ata.channels[1].iobase2, 0x370);
SET_EBDA(ata.channels[1].irq, 15);
#endif
#if CONFIG_MAX_ATA_INTERFACES > 2
SET_EBDA(ata.channels[2].iface, ATA_IFACE_ISA);
SET_EBDA(ata.channels[2].iobase1, 0x1e8);
SET_EBDA(ata.channels[2].iobase2, 0x3e0);
SET_EBDA(ata.channels[2].irq, 12);
#endif
#if CONFIG_MAX_ATA_INTERFACES > 3
SET_EBDA(ata.channels[3].iface, ATA_IFACE_ISA);
SET_EBDA(ata.channels[3].iobase1, 0x168);
SET_EBDA(ata.channels[3].iobase2, 0x360);
SET_EBDA(ata.channels[3].irq, 11);
#endif
#if CONFIG_MAX_ATA_INTERFACES > 4
#error Please fill the ATA interface informations
#endif
}
void
hard_drive_setup()
{
if (!CONFIG_ATA)
return;
dprintf(3, "init hard drives\n");
ata_init();
ata_detect();
// Store the device count
SET_BDA(disk_count, GET_EBDA(ata.hdcount));
SET_BDA(disk_control_byte, 0xc0);
// Enable IRQ14 (handle_76)
unmask_pic2(PIC2_IRQ14);
}