blob: aef1be83755e8ed1162f46fb4fa4efd49fbba110 [file] [log] [blame]
// 16bit code to handle system clocks.
//
// Copyright (C) 2008 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU GPLv3 license.
#include "biosvar.h" // struct bregs
#include "util.h" // debug_enter
#include "disk.h" // floppy_tick
#include "cmos.h" // inb_cmos
#define DEBUGF1(fmt, args...) bprintf(0, fmt , ##args)
#define DEBUGF(fmt, args...)
// RTC register flags
#define RTC_A_UIP 0x80
#define RTC_B_SET 0x80
#define RTC_B_PIE 0x40
#define RTC_B_AIE 0x20
#define RTC_B_UIE 0x10
/****************************************************************
* Init
****************************************************************/
static void
pit_setup()
{
// timer0: binary count, 16bit count, mode 2
outb(0x34, PORT_PIT_MODE);
// maximum count of 0000H = 18.2Hz
outb(0x0, PORT_PIT_COUNTER0);
outb(0x0, PORT_PIT_COUNTER0);
}
static u32
bcd2bin(u8 val)
{
return (val & 0xf) + ((val >> 4) * 10);
}
void
timer_setup()
{
dprintf(3, "init timer\n");
pit_setup();
u32 seconds = bcd2bin(inb_cmos(CMOS_RTC_SECONDS));
u32 ticks = (seconds * 18206507) / 1000000;
u32 minutes = bcd2bin(inb_cmos(CMOS_RTC_MINUTES));
ticks += (minutes * 10923904) / 10000;
u32 hours = bcd2bin(inb_cmos(CMOS_RTC_HOURS));
ticks += (hours * 65543427) / 1000;
SET_BDA(timer_counter, ticks);
SET_BDA(timer_rollover, 0);
}
static void
init_rtc()
{
outb_cmos(0x26, CMOS_STATUS_A);
outb_cmos(0x02, CMOS_STATUS_B);
inb_cmos(CMOS_STATUS_C);
inb_cmos(CMOS_STATUS_D);
}
/****************************************************************
* Standard clock functions
****************************************************************/
static u8
rtc_updating()
{
// This function checks to see if the update-in-progress bit
// is set in CMOS Status Register A. If not, it returns 0.
// If it is set, it tries to wait until there is a transition
// to 0, and will return 0 if such a transition occurs. A 1
// is returned only after timing out. The maximum period
// that this bit should be set is constrained to 244useconds.
// The count I use below guarantees coverage or more than
// this time, with any reasonable IPS setting.
u16 count = 25000;
while (--count != 0) {
if ( (inb_cmos(CMOS_STATUS_A) & 0x80) == 0 )
return 0;
}
return 1; // update-in-progress never transitioned to 0
}
// get current clock count
static void
handle_1a00(struct bregs *regs)
{
u32 ticks = GET_BDA(timer_counter);
regs->cx = ticks >> 16;
regs->dx = ticks;
regs->al = GET_BDA(timer_rollover);
SET_BDA(timer_rollover, 0); // reset flag
set_success(regs);
}
// Set Current Clock Count
static void
handle_1a01(struct bregs *regs)
{
u32 ticks = (regs->cx << 16) | regs->dx;
SET_BDA(timer_counter, ticks);
SET_BDA(timer_rollover, 0); // reset flag
regs->ah = 0;
set_success(regs);
}
// Read CMOS Time
static void
handle_1a02(struct bregs *regs)
{
if (rtc_updating()) {
set_fail(regs);
return;
}
regs->dh = inb_cmos(CMOS_RTC_SECONDS);
regs->cl = inb_cmos(CMOS_RTC_MINUTES);
regs->ch = inb_cmos(CMOS_RTC_HOURS);
regs->dl = inb_cmos(CMOS_STATUS_B) & 0x01;
regs->ah = 0;
regs->al = regs->ch;
set_success(regs);
}
// Set CMOS Time
static void
handle_1a03(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1111 1101 0111 1101 0000 0000
// after 0110 0010 0110 0010 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01100000b) | 00000010b)
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(regs->dh, CMOS_RTC_SECONDS);
outb_cmos(regs->cl, CMOS_RTC_MINUTES);
outb_cmos(regs->ch, CMOS_RTC_HOURS);
// Set Daylight Savings time enabled bit to requested value
u8 val8 = (inb_cmos(CMOS_STATUS_B) & 0x60) | 0x02 | (regs->dl & 0x01);
outb_cmos(val8, CMOS_STATUS_B);
regs->ah = 0;
regs->al = val8; // val last written to Reg B
set_success(regs);
}
// Read CMOS Date
static void
handle_1a04(struct bregs *regs)
{
regs->ah = 0;
if (rtc_updating()) {
set_fail(regs);
return;
}
regs->cl = inb_cmos(CMOS_RTC_YEAR);
regs->dh = inb_cmos(CMOS_RTC_MONTH);
regs->dl = inb_cmos(CMOS_RTC_DAY_MONTH);
regs->ch = inb_cmos(CMOS_CENTURY);
regs->al = regs->ch;
set_success(regs);
}
// Set CMOS Date
static void
handle_1a05(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0000 0010 0000 0000
// after 0110 1101 0111 1101 0000 0010 0000 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01111111b)
if (rtc_updating()) {
init_rtc();
set_fail(regs);
return;
}
outb_cmos(regs->cl, CMOS_RTC_YEAR);
outb_cmos(regs->dh, CMOS_RTC_MONTH);
outb_cmos(regs->dl, CMOS_RTC_DAY_MONTH);
outb_cmos(regs->ch, CMOS_CENTURY);
// clear halt-clock bit
u8 val8 = inb_cmos(CMOS_STATUS_B) & ~RTC_B_SET;
outb_cmos(val8, CMOS_STATUS_B);
regs->ah = 0;
regs->al = val8; // AL = val last written to Reg B
set_success(regs);
}
// Set Alarm Time in CMOS
static void
handle_1a06(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3
// before 1101 1111 0101 1111 0000 0000
// after 0110 1111 0111 1111 0010 0000
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = ((RegB & 01111111b) | 00100000b)
u8 val8 = inb_cmos(CMOS_STATUS_B); // Get Status Reg B
regs->ax = 0;
if (val8 & 0x20) {
// Alarm interrupt enabled already
set_fail(regs);
return;
}
if (rtc_updating()) {
init_rtc();
// fall through as if an update were not in progress
}
outb_cmos(regs->dh, CMOS_RTC_SECONDS_ALARM);
outb_cmos(regs->cl, CMOS_RTC_MINUTES_ALARM);
outb_cmos(regs->ch, CMOS_RTC_HOURS_ALARM);
outb(inb(PORT_PIC2_DATA) & ~PIC2_IRQ8, PORT_PIC2_DATA); // enable IRQ 8
// enable Status Reg B alarm bit, clear halt clock bit
outb_cmos((val8 & ~RTC_B_SET) | RTC_B_AIE, CMOS_STATUS_B);
set_success(regs);
}
// Turn off Alarm
static void
handle_1a07(struct bregs *regs)
{
// Using a debugger, I notice the following masking/setting
// of bits in Status Register B, by setting Reg B to
// a few values and getting its value after INT 1A was called.
//
// try#1 try#2 try#3 try#4
// before 1111 1101 0111 1101 0010 0000 0010 0010
// after 0100 0101 0101 0101 0000 0000 0000 0010
//
// Bit4 in try#1 flipped in hardware (forced low) due to bit7=1
// My assumption: RegB = (RegB & 01010111b)
u8 val8 = inb_cmos(CMOS_STATUS_B); // Get Status Reg B
// clear clock-halt bit, disable alarm bit
outb_cmos(val8 & ~(RTC_B_SET|RTC_B_AIE), CMOS_STATUS_B);
regs->ah = 0;
regs->al = val8; // val last written to Reg B
set_success(regs);
}
// Unsupported
static void
handle_1aXX(struct bregs *regs)
{
set_fail(regs);
}
// INT 1Ah Time-of-day Service Entry Point
void VISIBLE16
handle_1a(struct bregs *regs)
{
//debug_enter(regs);
switch (regs->ah) {
case 0x00: handle_1a00(regs); break;
case 0x01: handle_1a01(regs); break;
case 0x02: handle_1a02(regs); break;
case 0x03: handle_1a03(regs); break;
case 0x04: handle_1a04(regs); break;
case 0x05: handle_1a05(regs); break;
case 0x06: handle_1a06(regs); break;
case 0x07: handle_1a07(regs); break;
case 0xb1: handle_1ab1(regs); break;
default: handle_1aXX(regs); break;
}
}
// User Timer Tick
void VISIBLE16
handle_1c()
{
//debug_enter(regs);
}
// INT 08h System Timer ISR Entry Point
void VISIBLE16
handle_08()
{
//debug_isr();
irq_enable();
floppy_tick();
u32 counter = GET_BDA(timer_counter);
counter++;
// compare to one days worth of timer ticks at 18.2 hz
if (counter >= 0x001800B0) {
// there has been a midnight rollover at this point
counter = 0;
SET_BDA(timer_rollover, GET_BDA(timer_rollover) + 1);
}
SET_BDA(timer_counter, counter);
// chain to user timer tick INT #0x1c
struct bregs br;
memset(&br, 0, sizeof(br));
call16_int(0x1c, &br);
irq_disable();
eoi_master_pic();
}
/****************************************************************
* Periodic timer
****************************************************************/
static int
set_usertimer(u32 usecs, u16 seg, u16 offset)
{
if (GET_BDA(rtc_wait_flag) & RWS_WAIT_PENDING)
return -1;
// Interval not already set.
SET_BDA(rtc_wait_flag, RWS_WAIT_PENDING); // Set status byte.
SET_BDA(ptr_user_wait_complete_flag, (seg << 16) | offset);
SET_BDA(user_wait_timeout, usecs);
// Unmask IRQ8 so INT70 will get through.
u8 irqDisable = inb(PORT_PIC2_DATA);
outb(irqDisable & ~PIC2_IRQ8, PORT_PIC2_DATA);
// Turn on the Periodic Interrupt timer
u8 bRegister = inb_cmos(CMOS_STATUS_B);
outb_cmos(bRegister | RTC_B_PIE, CMOS_STATUS_B);
return 0;
}
static void
clear_usertimer()
{
// Turn off status byte.
SET_BDA(rtc_wait_flag, 0);
// Clear the Periodic Interrupt.
u8 bRegister = inb_cmos(CMOS_STATUS_B);
outb_cmos(bRegister & ~RTC_B_PIE, CMOS_STATUS_B);
}
// Sleep for n microseconds.
int
usleep(u32 count)
{
#ifdef MODE16
// In 16bit mode, use the rtc to wait for the specified time.
u8 statusflag = 0;
int ret = set_usertimer(count, GET_SEG(SS), (u32)&statusflag);
if (ret)
return -1;
irq_enable();
while (!statusflag)
cpu_relax();
irq_disable();
return 0;
#else
// In 32bit mode, we need to call into 16bit mode to sleep.
struct bregs br;
memset(&br, 0, sizeof(br));
br.ah = 0x86;
br.cx = count >> 16;
br.dx = count;
call16_int(0x15, &br);
if (br.flags & F_CF)
return -1;
return 0;
#endif
}
#define RET_ECLOCKINUSE 0x83
// Wait for CX:DX microseconds. currently using the
// refresh request port 0x61 bit4, toggling every 15usec
void
handle_1586(struct bregs *regs)
{
int ret = usleep((regs->cx << 16) | regs->dx);
if (ret)
set_code_fail(regs, RET_ECLOCKINUSE);
else
set_success(regs);
}
// Set Interval requested.
static void
handle_158300(struct bregs *regs)
{
int ret = set_usertimer((regs->cx << 16) | regs->dx, regs->es, regs->bx);
if (ret)
// Interval already set.
set_code_fail(regs, RET_EUNSUPPORTED);
else
set_success(regs);
}
// Clear interval requested
static void
handle_158301(struct bregs *regs)
{
clear_usertimer();
set_success(regs);
}
static void
handle_1583XX(struct bregs *regs)
{
set_code_fail(regs, RET_EUNSUPPORTED);
regs->al--;
}
void
handle_1583(struct bregs *regs)
{
switch (regs->al) {
case 0x00: handle_158300(regs); break;
case 0x01: handle_158301(regs); break;
default: handle_1583XX(regs); break;
}
}
// int70h: IRQ8 - CMOS RTC
void VISIBLE16
handle_70()
{
//debug_isr();
// Check which modes are enabled and have occurred.
u8 registerB = inb_cmos(CMOS_STATUS_B);
u8 registerC = inb_cmos(CMOS_STATUS_C);
if (!(registerB & (RTC_B_PIE|RTC_B_AIE)))
goto done;
if (registerC & 0x20) {
// Handle Alarm Interrupt.
struct bregs br;
memset(&br, 0, sizeof(br));
call16_int(0x4a, &br);
irq_disable();
}
if (!(registerC & 0x40))
goto done;
// Handle Periodic Interrupt.
if (!GET_BDA(rtc_wait_flag))
goto done;
// Wait Interval (Int 15, AH=83) active.
u32 time = GET_BDA(user_wait_timeout); // Time left in microseconds.
if (time < 0x3D1) {
// Done waiting - write to specified flag byte.
u32 segoff = GET_BDA(ptr_user_wait_complete_flag);
u16 segment = segoff >> 16;
u16 offset = segoff & 0xffff;
u8 oldval = GET_FARVAR(segment, *(u8*)(offset+0));
SET_FARVAR(segment, *(u8*)(offset+0), oldval | 0x80);
clear_usertimer();
} else {
// Continue waiting.
time -= 0x3D1;
SET_BDA(user_wait_timeout, time);
}
done:
eoi_both_pics();
}