blob: 659de203528f3aba88017085dfe36c292515acb8 [file] [log] [blame]
// Low level ATA disk access
//
// Copyright (C) 2008 Kevin O'Connor <kevin@koconnor.net>
// Copyright (C) 2002 MandrakeSoft S.A.
//
// This file may be distributed under the terms of the GNU LGPLv3 license.
#include "types.h" // u8
#include "ioport.h" // inb
#include "util.h" // dprintf
#include "cmos.h" // inb_cmos
#include "pic.h" // enable_hwirq
#include "biosvar.h" // GET_EBDA
#include "pci.h" // pci_find_class
#include "pci_ids.h" // PCI_CLASS_STORAGE_OTHER
#include "pci_regs.h" // PCI_INTERRUPT_LINE
#include "boot.h" // add_bcv_hd
#include "disk.h" // struct ata_s
#include "atabits.h" // ATA_CB_STAT
#define TIMEOUT 0
#define BSY 1
#define NOT_BSY 2
#define NOT_BSY_DRQ 3
#define NOT_BSY_NOT_DRQ 4
#define NOT_BSY_RDY 5
#define IDE_SECTOR_SIZE 512
#define CDROM_SECTOR_SIZE 2048
#define IDE_TIMEOUT 32000u //32 seconds max for IDE ops
struct ata_s ATA VAR16_32;
/****************************************************************
* Helper functions
****************************************************************/
// Wait for the specified ide state
static inline int
await_ide(u8 mask, u8 flags, u16 base, u16 timeout)
{
u64 end = calc_future_tsc(timeout);
for (;;) {
u8 status = inb(base+ATA_CB_STAT);
if ((status & mask) == flags)
return status;
if (rdtscll() >= end) {
dprintf(1, "IDE time out\n");
return -1;
}
}
}
// Wait for the device to be not-busy.
static int
await_not_bsy(u16 base)
{
return await_ide(ATA_CB_STAT_BSY, 0, base, IDE_TIMEOUT);
}
// Wait for the device to be ready.
static int
await_rdy(u16 base)
{
return await_ide(ATA_CB_STAT_RDY, ATA_CB_STAT_RDY, base, IDE_TIMEOUT);
}
// Wait for ide state - pauses for one ata cycle first.
static __always_inline int
pause_await_not_bsy(u16 iobase1, u16 iobase2)
{
// Wait one PIO transfer cycle.
inb(iobase2 + ATA_CB_ASTAT);
return await_not_bsy(iobase1);
}
// Wait for ide state - pause for 400ns first.
static __always_inline int
ndelay_await_not_bsy(u16 iobase1)
{
ndelay(400);
return await_not_bsy(iobase1);
}
// Reset a drive
void
ata_reset(int driveid)
{
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2);
dprintf(6, "ata_reset driveid=%d\n", driveid);
// Pulse SRST
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN | ATA_CB_DC_SRST, iobase2+ATA_CB_DC);
udelay(5);
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2+ATA_CB_DC);
mdelay(2);
// wait for device to become not busy.
int status = await_not_bsy(iobase1);
if (status < 0)
goto done;
if (slave) {
// Change device.
u64 end = calc_future_tsc(IDE_TIMEOUT);
for (;;) {
outb(ATA_CB_DH_DEV1, iobase1 + ATA_CB_DH);
status = await_not_bsy(iobase1);
if (status < 0)
goto done;
if (inb(iobase1 + ATA_CB_DH) == ATA_CB_DH_DEV1)
break;
// Change drive request failed to take effect - retry.
if (rdtscll() >= end) {
dprintf(1, "ata_reset slave time out\n");
goto done;
}
}
}
// On a user-reset request, wait for RDY if it is an ATA device.
u8 type=GET_GLOBAL(ATA.devices[driveid].type);
if (type == ATA_TYPE_ATA)
status = await_rdy(iobase1);
done:
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
dprintf(6, "ata_reset exit status=%x\n", status);
}
/****************************************************************
* ATA send command
****************************************************************/
struct ata_pio_command {
u8 feature;
u8 sector_count;
u8 lba_low;
u8 lba_mid;
u8 lba_high;
u8 device;
u8 command;
u8 sector_count2;
u8 lba_low2;
u8 lba_mid2;
u8 lba_high2;
};
// Send an ata command to the drive.
static int
send_cmd(int driveid, struct ata_pio_command *cmd)
{
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2);
// Disable interrupts
outb(ATA_CB_DC_HD15 | ATA_CB_DC_NIEN, iobase2 + ATA_CB_DC);
// Select device
int status = await_not_bsy(iobase1);
if (status < 0)
return status;
u8 newdh = ((cmd->device & ~ATA_CB_DH_DEV1)
| (slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0));
u8 olddh = inb(iobase1 + ATA_CB_DH);
outb(newdh, iobase1 + ATA_CB_DH);
if ((olddh ^ newdh) & (1<<4)) {
// Was a device change - wait for device to become not busy.
status = await_not_bsy(iobase1);
if (status < 0)
return status;
}
if (cmd->command & 0x04) {
outb(0x00, iobase1 + ATA_CB_FR);
outb(cmd->sector_count2, iobase1 + ATA_CB_SC);
outb(cmd->lba_low2, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid2, iobase1 + ATA_CB_CL);
outb(cmd->lba_high2, iobase1 + ATA_CB_CH);
}
outb(cmd->feature, iobase1 + ATA_CB_FR);
outb(cmd->sector_count, iobase1 + ATA_CB_SC);
outb(cmd->lba_low, iobase1 + ATA_CB_SN);
outb(cmd->lba_mid, iobase1 + ATA_CB_CL);
outb(cmd->lba_high, iobase1 + ATA_CB_CH);
outb(cmd->command, iobase1 + ATA_CB_CMD);
status = ndelay_await_not_bsy(iobase1);
if (status < 0)
return status;
if (status & ATA_CB_STAT_ERR) {
dprintf(6, "send_cmd : read error (status=%02x err=%02x)\n"
, status, inb(iobase1 + ATA_CB_ERR));
return -4;
}
if (!(status & ATA_CB_STAT_DRQ)) {
dprintf(6, "send_cmd : DRQ not set (status %02x)\n", status);
return -5;
}
return 0;
}
/****************************************************************
* ATA transfers
****************************************************************/
// Read and discard x number of bytes from an io channel.
static void
insx_discard(int mode, int iobase1, int bytes)
{
int count, i;
if (mode == ATA_MODE_PIO32) {
count = bytes / 4;
for (i=0; i<count; i++)
inl(iobase1);
} else {
count = bytes / 2;
for (i=0; i<count; i++)
inw(iobase1);
}
}
// Transfer 'count' blocks (of 'blocksize' bytes) to/from drive
// 'driveid'. If 'skipfirst' or 'skiplast' is set then the first
// and/or last block may be partially transferred. This function is
// inlined because all the callers use different forms and because the
// large number of parameters would consume a lot of stack space.
static __always_inline int
ata_transfer(int driveid, int iswrite, int count, int blocksize
, int skipfirst, int skiplast, void *buf_fl)
{
dprintf(16, "ata_transfer id=%d write=%d count=%d bs=%d"
" skipf=%d skipl=%d buf=%p\n"
, driveid, iswrite, count, blocksize
, skipfirst, skiplast, buf_fl);
// Reset count of transferred data
SET_EBDA(sector_count, 0);
u8 channel = driveid / 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2);
u8 mode = GET_GLOBAL(ATA.devices[driveid].mode);
int current = 0;
int status;
for (;;) {
int bsize = blocksize;
if (skipfirst && current == 0) {
insx_discard(mode, iobase1, skipfirst);
bsize -= skipfirst;
}
if (skiplast && current == count-1)
bsize -= skiplast;
if (iswrite) {
// Write data to controller
dprintf(16, "Write sector id=%d dest=%p\n", driveid, buf_fl);
if (mode == ATA_MODE_PIO32)
outsl_fl(iobase1, buf_fl, bsize / 4);
else
outsw_fl(iobase1, buf_fl, bsize / 2);
} else {
// Read data from controller
dprintf(16, "Read sector id=%d dest=%p\n", driveid, buf_fl);
if (mode == ATA_MODE_PIO32)
insl_fl(iobase1, buf_fl, bsize / 4);
else
insw_fl(iobase1, buf_fl, bsize / 2);
}
buf_fl += bsize;
if (skiplast && current == count-1)
insx_discard(mode, iobase1, skiplast);
status = pause_await_not_bsy(iobase1, iobase2);
if (status < 0)
// Error
return status;
current++;
SET_EBDA(sector_count, current);
if (current == count)
break;
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DRQ | ATA_CB_STAT_ERR);
if (status != ATA_CB_STAT_DRQ) {
dprintf(6, "ata_transfer : more sectors left (status %02x)\n"
, status);
return -6;
}
}
status &= (ATA_CB_STAT_BSY | ATA_CB_STAT_DF | ATA_CB_STAT_DRQ
| ATA_CB_STAT_ERR);
if (!iswrite)
status &= ~ATA_CB_STAT_DF;
if (status != 0) {
dprintf(6, "ata_transfer : no sectors left (status %02x)\n", status);
return -7;
}
// Enable interrupts
outb(ATA_CB_DC_HD15, iobase2+ATA_CB_DC);
return 0;
}
static noinline int
ata_transfer_disk(const struct disk_op_s *op)
{
return ata_transfer(op->driveid, op->command == ATA_CMD_WRITE_SECTORS
, op->count, IDE_SECTOR_SIZE, 0, 0, op->buf_fl);
}
static noinline int
ata_transfer_cdrom(const struct disk_op_s *op)
{
return ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE
, 0, 0, op->buf_fl);
}
static noinline int
ata_transfer_cdemu(const struct disk_op_s *op, int before, int after)
{
int vcount = op->count * 4 - before - after;
int ret = ata_transfer(op->driveid, 0, op->count, CDROM_SECTOR_SIZE
, before*512, after*512, op->buf_fl);
if (ret) {
SET_EBDA(sector_count, 0);
return ret;
}
SET_EBDA(sector_count, vcount);
return 0;
}
/****************************************************************
* ATA hard drive functions
****************************************************************/
static noinline int
send_cmd_disk(const struct disk_op_s *op)
{
u64 lba = op->lba;
struct ata_pio_command cmd;
memset(&cmd, 0, sizeof(cmd));
cmd.command = op->command;
if (op->count >= (1<<8) || lba + op->count >= (1<<28)) {
cmd.sector_count2 = op->count >> 8;
cmd.lba_low2 = lba >> 24;
cmd.lba_mid2 = lba >> 32;
cmd.lba_high2 = lba >> 40;
cmd.command |= 0x04;
lba &= 0xffffff;
}
cmd.feature = 0;
cmd.sector_count = op->count;
cmd.lba_low = lba;
cmd.lba_mid = lba >> 8;
cmd.lba_high = lba >> 16;
cmd.device = ((lba >> 24) & 0xf) | ATA_CB_DH_LBA;
return send_cmd(op->driveid, &cmd);
}
// Read/write count blocks from a harddrive.
__always_inline int
ata_cmd_data(struct disk_op_s *op)
{
int ret = send_cmd_disk(op);
if (ret)
return ret;
return ata_transfer_disk(op);
}
/****************************************************************
* ATAPI functions
****************************************************************/
// Low-level atapi command transmit function.
static __always_inline int
send_atapi_cmd(int driveid, u8 *cmdbuf, u8 cmdlen, u16 blocksize)
{
u8 channel = driveid / 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
u16 iobase2 = GET_GLOBAL(ATA.channels[channel].iobase2);
struct ata_pio_command cmd;
cmd.sector_count = 0;
cmd.feature = 0;
cmd.lba_low = 0;
cmd.lba_mid = blocksize;
cmd.lba_high = blocksize >> 8;
cmd.device = 0;
cmd.command = ATA_CMD_PACKET;
int ret = send_cmd(driveid, &cmd);
if (ret)
return ret;
// Send command to device
outsw_fl(iobase1, MAKE_FLATPTR(GET_SEG(SS), cmdbuf), cmdlen / 2);
int status = pause_await_not_bsy(iobase1, iobase2);
if (status < 0)
return status;
if (status & ATA_CB_STAT_ERR) {
dprintf(6, "send_atapi_cmd : read error (status=%02x err=%02x)\n"
, status, inb(iobase1 + ATA_CB_ERR));
return -2;
}
if (!(status & ATA_CB_STAT_DRQ)) {
dprintf(6, "send_atapi_cmd : DRQ not set (status %02x)\n", status);
return -3;
}
return 0;
}
// Low-level cdrom read atapi command transmit function.
static int
send_cmd_cdrom(const struct disk_op_s *op)
{
u8 atacmd[12];
memset(atacmd, 0, sizeof(atacmd));
atacmd[0]=0x28; // READ command
atacmd[7]=(op->count & 0xff00) >> 8; // Sectors
atacmd[8]=(op->count & 0x00ff);
atacmd[2]=(op->lba & 0xff000000) >> 24; // LBA
atacmd[3]=(op->lba & 0x00ff0000) >> 16;
atacmd[4]=(op->lba & 0x0000ff00) >> 8;
atacmd[5]=(op->lba & 0x000000ff);
return send_atapi_cmd(op->driveid, atacmd, sizeof(atacmd)
, CDROM_SECTOR_SIZE);
}
// Read sectors from the cdrom.
__always_inline int
cdrom_read(struct disk_op_s *op)
{
int ret = send_cmd_cdrom(op);
if (ret)
return ret;
return ata_transfer_cdrom(op);
}
// Pretend the cdrom has 512 byte sectors (instead of 2048) and read
// sectors.
__always_inline int
cdrom_read_512(struct disk_op_s *op)
{
u32 vlba = op->lba;
u32 vcount = op->count;
u32 lba = op->lba = vlba / 4;
u32 velba = vlba + vcount - 1;
u32 elba = velba / 4;
op->count = elba - lba + 1;
int before = vlba % 4;
int after = 3 - (velba % 4);
dprintf(16, "cdrom_read_512: id=%d vlba=%d vcount=%d buf=%p lba=%d elba=%d"
" count=%d before=%d after=%d\n"
, op->driveid, vlba, vcount, op->buf_fl, lba, elba
, op->count, before, after);
int ret = send_cmd_cdrom(op);
if (ret)
return ret;
return ata_transfer_cdemu(op, before, after);
}
// Send a simple atapi command to a drive.
int
ata_cmd_packet(int driveid, u8 *cmdbuf, u8 cmdlen
, u32 length, void *buf_fl)
{
int ret = send_atapi_cmd(driveid, cmdbuf, cmdlen, length);
if (ret)
return ret;
return ata_transfer(driveid, 0, 1, length, 0, 0, buf_fl);
}
/****************************************************************
* Disk geometry translation
****************************************************************/
static u8
get_translation(int driveid)
{
if (! CONFIG_COREBOOT) {
// Emulators pass in the translation info via nvram.
u8 channel = driveid / 2;
u8 translation = inb_cmos(CMOS_BIOS_DISKTRANSFLAG + channel/2);
translation >>= 2 * (driveid % 4);
translation &= 0x03;
return translation;
}
// On COREBOOT, use a heuristic to determine translation type.
u16 heads = GET_GLOBAL(ATA.devices[driveid].pchs.heads);
u16 cylinders = GET_GLOBAL(ATA.devices[driveid].pchs.cylinders);
u16 spt = GET_GLOBAL(ATA.devices[driveid].pchs.spt);
if (cylinders <= 1024 && heads <= 16 && spt <= 63)
return ATA_TRANSLATION_NONE;
if (cylinders * heads <= 131072)
return ATA_TRANSLATION_LARGE;
return ATA_TRANSLATION_LBA;
}
static void
setup_translation(int driveid)
{
u8 translation = get_translation(driveid);
SET_GLOBAL(ATA.devices[driveid].translation, translation);
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 heads = GET_GLOBAL(ATA.devices[driveid].pchs.heads);
u16 cylinders = GET_GLOBAL(ATA.devices[driveid].pchs.cylinders);
u16 spt = GET_GLOBAL(ATA.devices[driveid].pchs.spt);
u64 sectors = GET_GLOBAL(ATA.devices[driveid].sectors);
dprintf(1, "ata%d-%d: PCHS=%u/%d/%d translation="
, channel, slave, cylinders, heads, spt);
switch (translation) {
case ATA_TRANSLATION_NONE:
dprintf(1, "none");
break;
case ATA_TRANSLATION_LBA:
dprintf(1, "lba");
spt = 63;
if (sectors > 63*255*1024) {
heads = 255;
cylinders = 1024;
break;
}
u32 sect = (u32)sectors / 63;
heads = sect / 1024;
if (heads>128)
heads = 255;
else if (heads>64)
heads = 128;
else if (heads>32)
heads = 64;
else if (heads>16)
heads = 32;
else
heads = 16;
cylinders = sect / heads;
break;
case ATA_TRANSLATION_RECHS:
dprintf(1, "r-echs");
// Take care not to overflow
if (heads==16) {
if (cylinders>61439)
cylinders=61439;
heads=15;
cylinders = (u16)((u32)(cylinders)*16/15);
}
// then go through the large bitshift process
case ATA_TRANSLATION_LARGE:
if (translation == ATA_TRANSLATION_LARGE)
dprintf(1, "large");
while (cylinders > 1024) {
cylinders >>= 1;
heads <<= 1;
// If we max out the head count
if (heads > 127)
break;
}
break;
}
// clip to 1024 cylinders in lchs
if (cylinders > 1024)
cylinders = 1024;
dprintf(1, " LCHS=%d/%d/%d\n", cylinders, heads, spt);
SET_GLOBAL(ATA.devices[driveid].lchs.heads, heads);
SET_GLOBAL(ATA.devices[driveid].lchs.cylinders, cylinders);
SET_GLOBAL(ATA.devices[driveid].lchs.spt, spt);
}
/****************************************************************
* ATA detect and init
****************************************************************/
static void
extract_model(int driveid, u8 *buffer)
{
char *model = ATA.devices[driveid].model;
int maxsize = ARRAY_SIZE(ATA.devices[driveid].model);
// Read model name
int i;
for (i=0; i<maxsize; i+=2) {
model[i] = buffer[i+54+1];
model[i+1] = buffer[i+54];
}
model[maxsize-1] = 0x00;
// Trim trailing spaces
for (i=maxsize-2; i>0 && model[i] == 0x20; i--)
model[i] = 0x00;
}
static u8
get_ata_version(u8 *buffer)
{
u16 ataversion = *(u16*)&buffer[160];
u8 version;
for (version=15; version>0; version--)
if (ataversion & (1<<version))
break;
return version;
}
static int
init_drive_atapi(int driveid)
{
// Send an IDENTIFY_DEVICE_PACKET command to device
u8 buffer[0x0200];
memset(buffer, 0, sizeof(buffer));
struct disk_op_s dop;
dop.driveid = driveid;
dop.command = ATA_CMD_IDENTIFY_DEVICE_PACKET;
dop.count = 1;
dop.lba = 1;
dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer);
int ret = ata_cmd_data(&dop);
if (ret)
return ret;
// Success - setup as ATAPI.
SET_GLOBAL(ATA.devices[driveid].type, ATA_TYPE_ATAPI);
u8 type = buffer[1] & 0x1f;
u8 removable = (buffer[0] & 0x80) ? 1 : 0;
u8 mode = buffer[96] ? ATA_MODE_PIO32 : ATA_MODE_PIO16;
u16 blksize = CDROM_SECTOR_SIZE;
SET_GLOBAL(ATA.devices[driveid].device, type);
SET_GLOBAL(ATA.devices[driveid].removable, removable);
SET_GLOBAL(ATA.devices[driveid].mode, mode);
SET_GLOBAL(ATA.devices[driveid].blksize, blksize);
// fill cdidmap
u8 cdcount = GET_GLOBAL(ATA.cdcount);
SET_GLOBAL(ATA.idmap[1][cdcount], driveid);
SET_GLOBAL(ATA.cdcount, cdcount+1);
// Report drive info to user.
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u8 version = get_ata_version(buffer);
extract_model(driveid, buffer);
printf("ata%d-%d: %s ATAPI-%d %s\n", channel, slave
, ATA.devices[driveid].model, version
, type == ATA_DEVICE_CDROM ? "CD-Rom/DVD-Rom" : "Device");
return 0;
}
static int
init_drive_ata(int driveid)
{
// Send an IDENTIFY_DEVICE command to device
u8 buffer[0x0200];
memset(buffer, 0, sizeof(buffer));
struct disk_op_s dop;
dop.driveid = driveid;
dop.command = ATA_CMD_IDENTIFY_DEVICE;
dop.count = 1;
dop.lba = 1;
dop.buf_fl = MAKE_FLATPTR(GET_SEG(SS), buffer);
int ret = ata_cmd_data(&dop);
if (ret)
return ret;
// Success - setup as ATA.
SET_GLOBAL(ATA.devices[driveid].type, ATA_TYPE_ATA);
u8 removable = (buffer[0] & 0x80) ? 1 : 0;
u8 mode = buffer[48*2] ? ATA_MODE_PIO32 : ATA_MODE_PIO16;
u16 blksize = IDE_SECTOR_SIZE;
u16 cylinders = *(u16*)&buffer[1*2]; // word 1
u16 heads = *(u16*)&buffer[3*2]; // word 3
u16 spt = *(u16*)&buffer[6*2]; // word 6
u64 sectors;
if (*(u16*)&buffer[83*2] & (1 << 10)) // word 83 - lba48 support
sectors = *(u64*)&buffer[100*2]; // word 100-103
else
sectors = *(u32*)&buffer[60*2]; // word 60 and word 61
SET_GLOBAL(ATA.devices[driveid].device, ATA_DEVICE_HD);
SET_GLOBAL(ATA.devices[driveid].removable, removable);
SET_GLOBAL(ATA.devices[driveid].mode, mode);
SET_GLOBAL(ATA.devices[driveid].blksize, blksize);
SET_GLOBAL(ATA.devices[driveid].pchs.heads, heads);
SET_GLOBAL(ATA.devices[driveid].pchs.cylinders, cylinders);
SET_GLOBAL(ATA.devices[driveid].pchs.spt, spt);
SET_GLOBAL(ATA.devices[driveid].sectors, sectors);
// Setup disk geometry translation.
setup_translation(driveid);
// Report drive info to user.
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u8 version = get_ata_version(buffer);
extract_model(driveid, buffer);
char *model = ATA.devices[driveid].model;
printf("ata%d-%d: %s ATA-%d Hard-Disk ", channel, slave, model, version);
u64 sizeinmb = sectors >> 11;
if (sizeinmb < (1 << 16))
printf("(%u MiBytes)\n", (u32)sizeinmb);
else
printf("(%u GiBytes)\n", (u32)(sizeinmb >> 10));
// Register with bcv system.
add_bcv_hd(driveid, model);
return 0;
}
static void
ata_detect()
{
// Device detection
int driveid, last_reset_driveid=-1;
for(driveid=0; driveid<CONFIG_MAX_ATA_DEVICES; driveid++) {
u8 channel = driveid / 2;
u8 slave = driveid % 2;
u16 iobase1 = GET_GLOBAL(ATA.channels[channel].iobase1);
if (!iobase1)
break;
// Look for device
outb(slave ? ATA_CB_DH_DEV1 : ATA_CB_DH_DEV0, iobase1+ATA_CB_DH);
outb(0x55, iobase1+ATA_CB_SC);
outb(0xaa, iobase1+ATA_CB_SN);
outb(0xaa, iobase1+ATA_CB_SC);
outb(0x55, iobase1+ATA_CB_SN);
outb(0x55, iobase1+ATA_CB_SC);
outb(0xaa, iobase1+ATA_CB_SN);
// Check if ioport registers look valid.
u8 sc = inb(iobase1+ATA_CB_SC);
u8 sn = inb(iobase1+ATA_CB_SN);
dprintf(6, "ata_detect drive=%d sc=%x sn=%x\n", driveid, sc, sn);
if (sc != 0x55 || sn != 0xaa)
continue;
// reset the channel
if (slave && driveid == last_reset_driveid + 1) {
// The drive was just reset - no need to reset it again.
} else {
ata_reset(driveid);
last_reset_driveid = driveid;
}
// check for ATAPI
int ret = init_drive_atapi(driveid);
if (!ret)
// Found an ATAPI drive.
continue;
u8 st = inb(iobase1+ATA_CB_STAT);
if (!st)
// Status not set - can't be a valid drive.
continue;
// Wait for RDY.
ret = await_rdy(iobase1);
if (ret < 0)
continue;
// check for ATA.
init_drive_ata(driveid);
}
printf("\n");
}
static void
ata_init()
{
memset(&ATA, 0, sizeof(ATA));
// hdidmap and cdidmap init.
u8 device;
for (device=0; device < CONFIG_MAX_ATA_DEVICES; device++) {
SET_GLOBAL(ATA.idmap[0][device], CONFIG_MAX_ATA_DEVICES);
SET_GLOBAL(ATA.idmap[1][device], CONFIG_MAX_ATA_DEVICES);
}
// Scan PCI bus for ATA adapters
int count=0;
int bdf, max;
foreachpci(bdf, max) {
if (pci_config_readw(bdf, PCI_CLASS_DEVICE) != PCI_CLASS_STORAGE_IDE)
continue;
u8 irq = pci_config_readb(bdf, PCI_INTERRUPT_LINE);
SET_GLOBAL(ATA.channels[count].irq, irq);
SET_GLOBAL(ATA.channels[count].pci_bdf, bdf);
u8 prog_if = pci_config_readb(bdf, PCI_CLASS_PROG);
u32 port1, port2;
if (prog_if & 1) {
port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_0) & ~3;
port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_1) & ~3;
} else {
port1 = 0x1f0;
port2 = 0x3f0;
}
SET_GLOBAL(ATA.channels[count].iobase1, port1);
SET_GLOBAL(ATA.channels[count].iobase2, port2);
dprintf(1, "ATA controller %d at %x/%x (dev %x prog_if %x)\n"
, count, port1, port2, bdf, prog_if);
count++;
if (prog_if & 4) {
port1 = pci_config_readl(bdf, PCI_BASE_ADDRESS_2) & ~3;
port2 = pci_config_readl(bdf, PCI_BASE_ADDRESS_3) & ~3;
} else {
port1 = 0x170;
port2 = 0x370;
}
dprintf(1, "ATA controller %d at %x/%x (dev %x prog_if %x)\n"
, count, port1, port2, bdf, prog_if);
SET_GLOBAL(ATA.channels[count].iobase1, port1);
SET_GLOBAL(ATA.channels[count].iobase2, port2);
count++;
}
}
void
hard_drive_setup()
{
if (!CONFIG_ATA)
return;
dprintf(3, "init hard drives\n");
ata_init();
ata_detect();
SET_BDA(disk_control_byte, 0xc0);
enable_hwirq(14, entry_76);
}
/****************************************************************
* Drive mapping
****************************************************************/
// Fill in Fixed Disk Parameter Table (located in ebda).
static void
fill_fdpt(int driveid)
{
if (driveid > 1)
return;
u16 nlc = GET_GLOBAL(ATA.devices[driveid].lchs.cylinders);
u16 nlh = GET_GLOBAL(ATA.devices[driveid].lchs.heads);
u16 nlspt = GET_GLOBAL(ATA.devices[driveid].lchs.spt);
u16 npc = GET_GLOBAL(ATA.devices[driveid].pchs.cylinders);
u16 nph = GET_GLOBAL(ATA.devices[driveid].pchs.heads);
u16 npspt = GET_GLOBAL(ATA.devices[driveid].pchs.spt);
struct fdpt_s *fdpt = &get_ebda_ptr()->fdpt[driveid];
fdpt->precompensation = 0xffff;
fdpt->drive_control_byte = 0xc0 | ((nph > 8) << 3);
fdpt->landing_zone = npc;
fdpt->cylinders = nlc;
fdpt->heads = nlh;
fdpt->sectors = nlspt;
if (nlc == npc && nlh == nph && nlspt == npspt)
// no logical CHS mapping used, just physical CHS
// use Standard Fixed Disk Parameter Table (FDPT)
return;
// complies with Phoenix style Translated Fixed Disk Parameter
// Table (FDPT)
fdpt->phys_cylinders = npc;
fdpt->phys_heads = nph;
fdpt->phys_sectors = npspt;
fdpt->a0h_signature = 0xa0;
// Checksum structure.
u8 sum = checksum((u8*)fdpt, sizeof(*fdpt)-1);
fdpt->checksum = -sum;
}
// Map a drive (that was registered via add_bcv_hd)
void
map_drive(int driveid)
{
// fill hdidmap
u8 hdcount = GET_BDA(hdcount);
dprintf(1, "Mapping driveid %d to %d\n", driveid, hdcount);
SET_GLOBAL(ATA.idmap[0][hdcount], driveid);
SET_BDA(hdcount, hdcount + 1);
// Fill "fdpt" structure.
fill_fdpt(hdcount);
}