blob: f847d9bd8ef1ae67e3a0322164df1f91e01499d1 [file] [log] [blame]
#include "stdint.h"
/* The coreboot table information is for conveying information
* from the firmware to the loaded OS image. Primarily this
* is expected to be information that cannot be discovered by
* other means, such as querying the hardware directly.
* All of the information should be Position Independent Data.
* That is it should be safe to relocated any of the information
* without it's meaning/correctness changing. For table that
* can reasonably be used on multiple architectures the data
* size should be fixed. This should ease the transition between
* 32 bit and 64 bit architectures etc.
* The completeness test for the information in this table is:
* - Can all of the hardware be detected?
* - Are the per motherboard constants available?
* - Is there enough to allow a kernel to run that was written before
* a particular motherboard is constructed? (Assuming the kernel
* has drivers for all of the hardware but it does not have
* assumptions on how the hardware is connected together).
* With this test it should be straight forward to determine if a
* table entry is required or not. This should remove much of the
* long term compatibility burden as table entries which are
* irrelevant or have been replaced by better alternatives may be
* dropped. Of course it is polite and expedite to include extra
* table entries and be backwards compatible, but it is not required.
struct lb_header
uint8_t signature[4]; /* LBIO */
uint32_t header_bytes;
uint32_t header_checksum;
uint32_t table_bytes;
uint32_t table_checksum;
uint32_t table_entries;
/* Every entry in the boot environment list will correspond to a boot
* info record. Encoding both type and size. The type is obviously
* so you can tell what it is. The size allows you to skip that
* boot environment record if you don't know what it is. This allows
* forward compatibility with records not yet defined.
struct lb_record {
uint32_t tag; /* tag ID */
uint32_t size; /* size of record (in bytes) */
#define LB_TAG_UNUSED 0x0000
#define LB_TAG_MEMORY 0x0001
#define LB_TAG_FORWARD 0x0011
struct lb_memory_range {
uint64_t start;
uint64_t size;
uint32_t type;
#define LB_MEM_RAM 1 /* Memory anyone can use */
#define LB_MEM_RESERVED 2 /* Don't use this memory region */
#define LB_MEM_ACPI 3 /* ACPI Tables */
#define LB_MEM_NVS 4 /* ACPI NVS Memory */
#define LB_MEM_UNUSABLE 5 /* Unusable address space */
#define LB_MEM_VENDOR_RSVD 6 /* Vendor Reserved */
#define LB_MEM_TABLE 16 /* Ram configuration tables are kept in */
struct lb_memory {
uint32_t tag;
uint32_t size;
struct lb_memory_range map[0];
struct lb_forward {
uint32_t tag;
uint32_t size;
uint64_t forward;