blob: ba2735d14519cb1183fc8a854015f243b7737494 [file] [log] [blame]
/*
* Support for Atmel AT45DB series DataFlash chips.
* This file is part of the flashrom project.
*
* Copyright (C) 2012 Aidan Thornton
* Copyright (C) 2013 Stefan Tauner
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <string.h>
#include "flash.h"
#include "chipdrivers.h"
#include "programmer.h"
#include "spi.h"
/* Status register bits */
#define AT45DB_READY (1<<7)
#define AT45DB_CMP (1<<6)
#define AT45DB_PROT (1<<1)
#define AT45DB_POWEROF2 (1<<0)
/* Opcodes */
#define AT45DB_STATUS 0xD7 /* NB: this is a block erase command on most other chips(!). */
#define AT45DB_DISABLE_PROTECT 0x3D, 0x2A, 0x7F, 0x9A
#define AT45DB_READ_ARRAY 0xE8
#define AT45DB_READ_PROTECT 0x32
#define AT45DB_READ_LOCKDOWN 0x35
#define AT45DB_PAGE_ERASE 0x81
#define AT45DB_BLOCK_ERASE 0x50
#define AT45DB_SECTOR_ERASE 0x7C
#define AT45DB_CHIP_ERASE 0xC7
#define AT45DB_CHIP_ERASE_ADDR 0x94809A /* Magic address. See usage. */
#define AT45DB_BUFFER1_WRITE 0x84
#define AT45DB_BUFFER1_PAGE_PROGRAM 0x88
/* Buffer 2 is unused yet.
#define AT45DB_BUFFER2_WRITE 0x87
#define AT45DB_BUFFER2_PAGE_PROGRAM 0x89
*/
static uint8_t at45db_read_status_register(struct flashctx *flash, uint8_t *status)
{
static const uint8_t cmd[] = { AT45DB_STATUS };
int ret = spi_send_command(flash, sizeof(cmd), 1, cmd, status);
if (ret != 0)
msg_cerr("Reading the status register failed!\n");
else
msg_cspew("Status register: 0x%02x.\n", *status);
return ret;
}
int spi_disable_blockprotect_at45db(struct flashctx *flash)
{
static const uint8_t cmd[4] = { AT45DB_DISABLE_PROTECT }; /* NB: 4 bytes magic number */
int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
if (ret != 0) {
msg_cerr("Sending disable lockdown failed!\n");
return ret;
}
uint8_t status;
ret = at45db_read_status_register(flash, &status);
if (ret != 0 || ((status & AT45DB_PROT) != 0)) {
msg_cerr("Disabling lockdown failed!\n");
return 1;
}
return 0;
}
static unsigned int at45db_get_sector_count(struct flashctx *flash)
{
unsigned int i, j;
unsigned int cnt = 0;
for (i = 0; i < NUM_ERASEFUNCTIONS; i++) {
if (flash->chip->block_erasers[i].block_erase == &spi_erase_at45db_sector) {
for (j = 0; j < NUM_ERASEREGIONS; j++) {
cnt += flash->chip->block_erasers[i].eraseblocks[j].count;
}
}
}
msg_cspew("%s: number of sectors=%u\n", __func__, cnt);
return cnt;
}
/* Reads and prettyprints protection/lockdown registers.
* Some elegance of the printouts had to be cut down a bit to share this code. */
static uint8_t at45db_prettyprint_protection_register(struct flashctx *flash, uint8_t opcode, const char *regname)
{
const uint8_t cmd[] = { opcode, 0, 0, 0 };
/* The first two sectors share the first result byte. */
uint8_t buf[at45db_get_sector_count(flash) - 1];
int ret = spi_send_command(flash, sizeof(cmd), sizeof(buf), cmd, buf);
if (ret != 0) {
msg_cerr("Reading the %s register failed!\n", regname);
return ret;
}
unsigned int i;
for (i = 0; i < sizeof(buf); i++) {
if (buf[i] != 0x00)
break;
if (i == sizeof(buf) - 1) {
msg_cdbg("No Sector is %sed.\n", regname);
return 0;
}
}
/* TODO: print which addresses are mapped to (un)locked sectors. */
msg_cdbg("Sector 0a is %s%sed.\n", ((buf[0] & 0xC0) == 0x00) ? "un" : "", regname);
msg_cdbg("Sector 0b is %s%sed.\n", ((buf[0] & 0x30) == 0x00) ? "un" : "", regname);
for (i = 1; i < sizeof(buf); i++)
msg_cdbg("Sector %2u is %s%sed.\n", i, (buf[i] == 0x00) ? "un" : "", regname);
return 0;
}
/* bit 7: busy flag
* bit 6: memory/buffer compare result
* bit 5-2: density (encoding see below)
* bit 1: protection enabled (soft or hard)
* bit 0: "power of 2" page size indicator (e.g. 1 means 256B; 0 means 264B)
*
* 5-2 encoding: bit 2 is always 1, bits 3-5 encode the density as "2^(bits - 1)" in Mb e.g.:
* AT45DB161D 1011 16Mb */
int spi_prettyprint_status_register_at45db(struct flashctx *flash)
{
uint8_t status;
if (at45db_read_status_register(flash, &status) != 0) {
return 1;
}
/* AT45DB321C does not support lockdown or a page size of a power of 2... */
const bool isAT45DB321C = (strcmp(flash->chip->name, "AT45DB321C") == 0);
msg_cdbg("Chip status register is 0x%02x\n", status);
msg_cdbg("Chip status register: Bit 7 / Ready is %sset\n", (status & AT45DB_READY) ? "" : "not ");
msg_cdbg("Chip status register: Bit 6 / Compare match is %sset\n", (status & AT45DB_CMP) ? "" : "not ");
spi_prettyprint_status_register_bit(status, 5);
spi_prettyprint_status_register_bit(status, 4);
spi_prettyprint_status_register_bit(status, 3);
spi_prettyprint_status_register_bit(status, 2);
const uint8_t dens = (status >> 3) & 0x7; /* Bit 2 is always 1, we use the other bits only */
msg_cdbg("Chip status register: Density is %u Mb\n", 1 << (dens - 1));
msg_cdbg("Chip status register: Bit 1 / Protection is %sset\n", (status & AT45DB_PROT) ? "" : "not ");
if (isAT45DB321C)
spi_prettyprint_status_register_bit(status, 0);
else
msg_cdbg("Chip status register: Bit 0 / \"Power of 2\" is %sset\n",
(status & AT45DB_POWEROF2) ? "" : "not ");
if (status & AT45DB_PROT)
at45db_prettyprint_protection_register(flash, AT45DB_READ_PROTECT, "protect");
if (!isAT45DB321C)
at45db_prettyprint_protection_register(flash, AT45DB_READ_LOCKDOWN, "lock");
return 0;
}
/* Probe function for AT45DB* chips that support multiple page sizes. */
int probe_spi_at45db(struct flashctx *flash)
{
uint8_t status;
struct flashchip *chip = flash->chip;
if (!probe_spi_rdid(flash))
return 0;
/* Some AT45DB* chips support two different page sizes each (e.g. 264 and 256 B). In order to tell which
* page size this chip has we need to read the status register. */
if (at45db_read_status_register(flash, &status) != 0)
return 0;
/* We assume sane power-of-2 page sizes and adjust the chip attributes in case this is not the case. */
if ((status & AT45DB_POWEROF2) == 0) {
chip->total_size = (chip->total_size / 32) * 33;
chip->page_size = (chip->page_size / 32) * 33;
unsigned int i, j;
for (i = 0; i < NUM_ERASEFUNCTIONS; i++) {
struct block_eraser *eraser = &chip->block_erasers[i];
for (j = 0; j < NUM_ERASEREGIONS; j++) {
eraser->eraseblocks[j].size = (eraser->eraseblocks[j].size / 32) * 33;
}
}
}
switch (chip->page_size) {
case 256: chip->gran = write_gran_256bytes; break;
case 264: chip->gran = write_gran_264bytes; break;
case 512: chip->gran = write_gran_512bytes; break;
case 528: chip->gran = write_gran_528bytes; break;
case 1024: chip->gran = write_gran_1024bytes; break;
case 1056: chip->gran = write_gran_1056bytes; break;
default:
msg_cerr("%s: unknown page size %d.\n", __func__, chip->page_size);
return 0;
}
msg_cdbg2("%s: total size %i kB, page size %i B\n", __func__, chip->total_size * 1024, chip->page_size);
return 1;
}
/* Returns the minimum number of bits needed to represent the given address.
* FIXME: use mind-blowing implementation.
* FIXME: move to utility module. */
static uint32_t address_to_bits(uint32_t addr)
{
unsigned int lzb = 0;
while (((1 << (31 - lzb)) & ~addr) != 0)
lzb++;
return 32 - lzb;
}
/* In case of non-power-of-two page sizes we need to convert the address flashrom uses to the address the
* DataFlash chips use. The latter uses a segmented address space where the page address is encoded in the
* more significant bits and the offset within the page is encoded in the less significant bits. The exact
* partition depends on the page size.
*/
static unsigned int at45db_convert_addr(unsigned int addr, unsigned int page_size)
{
unsigned int page_bits = address_to_bits(page_size - 1);
unsigned int at45db_addr = ((addr / page_size) << page_bits) | (addr % page_size);
msg_cspew("%s: addr=0x%x, page_size=%u, page_bits=%u -> at45db_addr=0x%x\n",
__func__, addr, page_size, page_bits, at45db_addr);
return at45db_addr;
}
int spi_read_at45db(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
const unsigned int page_size = flash->chip->page_size;
const unsigned int total_size = flash->chip->total_size * 1024;
if ((addr + len) > total_size) {
msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n",
__func__, addr, len, total_size);
return 1;
}
/* We have to split this up into chunks to fit within the programmer's read size limit, but those
* chunks can cross page boundaries. */
const unsigned int max_data_read = flash->pgm->spi.max_data_read;
const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size;
while (addr < len) {
unsigned int chunk = min(max_chunk, len);
int ret = spi_nbyte_read(flash, at45db_convert_addr(addr, page_size), buf + addr, chunk);
if (ret) {
msg_cerr("%s: error sending read command!\n", __func__);
return ret;
}
addr += chunk;
}
return 0;
}
/* Legacy continuous read, used where spi_read_at45db() is not available.
* The first 4 (dummy) bytes read need to be discarded. */
int spi_read_at45db_e8(struct flashctx *flash, uint8_t *buf, unsigned int addr, unsigned int len)
{
const unsigned int page_size = flash->chip->page_size;
const unsigned int total_size = flash->chip->total_size * 1024;
if ((addr + len) > total_size) {
msg_cerr("%s: tried to read beyond flash boundary: addr=%u, len=%u, size=%u\n",
__func__, addr, len, total_size);
return 1;
}
/* We have to split this up into chunks to fit within the programmer's read size limit, but those
* chunks can cross page boundaries. */
const unsigned int max_data_read = flash->pgm->spi.max_data_read;
const unsigned int max_chunk = (max_data_read > 0) ? max_data_read : page_size;
while (addr < len) {
const unsigned int addr_at45 = at45db_convert_addr(addr, page_size);
const unsigned char cmd[] = {
AT45DB_READ_ARRAY,
(addr_at45 >> 16) & 0xff,
(addr_at45 >> 8) & 0xff,
(addr_at45 >> 0) & 0xff
};
/* We need to leave place for 4 dummy bytes and handle them explicitly. */
unsigned int chunk = min(max_chunk, len + 4);
uint8_t tmp[chunk];
int ret = spi_send_command(flash, sizeof(cmd), chunk, cmd, tmp);
if (ret) {
msg_cerr("%s: error sending read command!\n", __func__);
return ret;
}
/* Copy result without dummy bytes into buf and advance address counter respectively. */
memcpy(buf + addr, tmp + 4, chunk - 4);
addr += chunk - 4;
}
return 0;
}
/* Returns 0 when ready, 1 on errors and timeouts. */
static int at45db_wait_ready (struct flashctx *flash, unsigned int us, unsigned int retries)
{
while (true) {
uint8_t status;
int ret = at45db_read_status_register(flash, &status);
if ((status & AT45DB_READY) == AT45DB_READY)
return 0;
if (ret != 0 || retries-- == 0)
return 1;
programmer_delay(us);
}
}
static int at45db_erase(struct flashctx *flash, uint8_t opcode, unsigned int at45db_addr, unsigned int stepsize, unsigned int retries)
{
const uint8_t cmd[] = {
opcode,
(at45db_addr >> 16) & 0xff,
(at45db_addr >> 8) & 0xff,
(at45db_addr >> 0) & 0xff
};
/* Send erase command. */
int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
if (ret != 0) {
msg_cerr("%s: error sending erase command!\n", __func__);
return ret;
}
/* Wait for completion. */
ret = at45db_wait_ready(flash, stepsize, retries);
if (ret != 0)
msg_cerr("%s: chip did not became ready again after sending the erase command!\n", __func__);
return ret;
}
int spi_erase_at45db_page(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
const unsigned int page_size = flash->chip->page_size;
const unsigned int total_size = flash->chip->total_size * 1024;
if ((addr % page_size) != 0 || (blocklen % page_size) != 0) {
msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
return 1;
}
if ((addr + blocklen) > total_size) {
msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
__func__, addr, blocklen, total_size);
return 1;
}
/* Needs typically about 35 ms for completion, so let's wait 100 ms in 500 us steps. */
return at45db_erase(flash, AT45DB_PAGE_ERASE, at45db_convert_addr(addr, page_size), 500, 200);
}
int spi_erase_at45db_block(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
const unsigned int page_size = flash->chip->page_size;
const unsigned int total_size = flash->chip->total_size * 1024;
if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check blocks not pages
msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
return 1;
}
if ((addr + blocklen) > total_size) {
msg_cerr("%s: tried to erase a block beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
__func__, addr, blocklen, total_size);
return 1;
}
/* Needs typically between 20 and 100 ms for completion, so let's wait 300 ms in 1 ms steps. */
return at45db_erase(flash, AT45DB_BLOCK_ERASE, at45db_convert_addr(addr, page_size), 1000, 300);
}
int spi_erase_at45db_sector(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
const unsigned int page_size = flash->chip->page_size;
const unsigned int total_size = flash->chip->total_size * 1024;
if ((addr % page_size) != 0 || (blocklen % page_size) != 0) { // FIXME: should check sectors not pages
msg_cerr("%s: cannot erase partial pages: addr=%u, blocklen=%u\n", __func__, addr, blocklen);
return 1;
}
if ((addr + blocklen) > total_size) {
msg_cerr("%s: tried to erase a sector beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
__func__, addr, blocklen, total_size);
return 1;
}
/* Needs typically about 5 s for completion, so let's wait 20 seconds in 200 ms steps. */
return at45db_erase(flash, AT45DB_SECTOR_ERASE, at45db_convert_addr(addr, page_size), 200000, 100);
}
int spi_erase_at45db_chip(struct flashctx *flash, unsigned int addr, unsigned int blocklen)
{
const unsigned int total_size = flash->chip->total_size * 1024;
if ((addr + blocklen) > total_size) {
msg_cerr("%s: tried to erase beyond flash boundary: addr=%u, blocklen=%u, size=%u\n",
__func__, addr, blocklen, total_size);
return 1;
}
/* Needs typically from about 5 to over 60 s for completion, so let's wait 100 s in 500 ms steps.
* NB: the address is not a real address but a magic number. This hack allows to share code. */
return at45db_erase(flash, AT45DB_CHIP_ERASE, AT45DB_CHIP_ERASE_ADDR, 500000, 200);
}
static int at45db_fill_buffer1(struct flashctx *flash, uint8_t *bytes, unsigned int off, unsigned int len)
{
const unsigned int page_size = flash->chip->page_size;
if ((off + len) > page_size) {
msg_cerr("Tried to write %u bytes at offset %u into a buffer of only %u B.\n",
len, off, page_size);
return 1;
}
/* Create a suitable buffer to store opcode, address and data chunks for buffer1. */
const unsigned int max_data_write = flash->pgm->spi.max_data_write;
const unsigned int max_chunk = (max_data_write > 0 && max_data_write <= page_size) ?
max_data_write : page_size;
uint8_t buf[4 + max_chunk];
buf[0] = AT45DB_BUFFER1_WRITE;
while (off < page_size) {
unsigned int cur_chunk = min(max_chunk, page_size - off);
buf[1] = (off >> 16) & 0xff;
buf[2] = (off >> 8) & 0xff;
buf[3] = (off >> 0) & 0xff;
memcpy(&buf[4], bytes + off, cur_chunk);
int ret = spi_send_command(flash, 4 + cur_chunk, 0, buf, NULL);
if (ret != 0) {
msg_cerr("%s: error sending buffer write!\n", __func__);
return ret;
}
off += cur_chunk;
}
return 0;
}
static int at45db_commit_buffer1(struct flashctx *flash, unsigned int at45db_addr)
{
const uint8_t cmd[] = {
AT45DB_BUFFER1_PAGE_PROGRAM,
(at45db_addr >> 16) & 0xff,
(at45db_addr >> 8) & 0xff,
(at45db_addr >> 0) & 0xff
};
/* Send buffer to device. */
int ret = spi_send_command(flash, sizeof(cmd), 0, cmd, NULL);
if (ret != 0) {
msg_cerr("%s: error sending buffer to main memory command!\n", __func__);
return ret;
}
/* Wait for completion (typically a few ms). */
ret = at45db_wait_ready(flash, 250, 200); // 50 ms
if (ret != 0) {
msg_cerr("%s: chip did not became ready again!\n", __func__);
return ret;
}
return 0;
}
static int at45db_program_page(struct flashctx *flash, uint8_t *buf, unsigned int at45db_addr)
{
int ret = at45db_fill_buffer1(flash, buf, 0, flash->chip->page_size);
if (ret != 0) {
msg_cerr("%s: filling the buffer failed!\n", __func__);
return ret;
}
ret = at45db_commit_buffer1(flash, at45db_addr);
if (ret != 0) {
msg_cerr("%s: committing page failed!\n", __func__);
return ret;
}
return 0;
}
int spi_write_at45db(struct flashctx *flash, uint8_t *buf, unsigned int start, unsigned int len)
{
const unsigned int page_size = flash->chip->page_size;
const unsigned int total_size = flash->chip->total_size;
if ((start % page_size) != 0 || (len % page_size) != 0) {
msg_cerr("%s: cannot write partial pages: start=%u, len=%u\n", __func__, start, len);
return 1;
}
if ((start + len) > (total_size * 1024)) {
msg_cerr("%s: tried to write beyond flash boundary: start=%u, len=%u, size=%u\n",
__func__, start, len, total_size);
return 1;
}
unsigned int i;
for (i = 0; i < len; i += page_size) {
if (at45db_program_page(flash, buf + i, at45db_convert_addr(start + i, page_size)) != 0) {
msg_cerr("Writing page %u failed!\n", i);
return 1;
}
}
return 0;
}