Aaron Durbin | 305b1f0 | 2013-01-15 08:27:05 -0600 | [diff] [blame] | 1 | /* |
| 2 | * This file is part of the coreboot project. |
| 3 | * |
| 4 | * Copyright (C) 2013 ChromeOS Authors |
| 5 | * |
| 6 | * This program is free software; you can redistribute it and/or |
| 7 | * modify it under the terms of the GNU General Public License as |
| 8 | * published by the Free Software Foundation; version 2 of |
| 9 | * the License. |
| 10 | * |
| 11 | * This program is distributed in the hope that it will be useful, |
| 12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| 13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| 14 | * GNU General Public License for more details. |
| 15 | * |
| 16 | * You should have received a copy of the GNU General Public License |
| 17 | * along with this program; if not, write to the Free Software |
| 18 | * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, |
| 19 | * MA 02110-1301 USA |
| 20 | */ |
| 21 | |
| 22 | #include <console/console.h> |
| 23 | #include <stdint.h> |
| 24 | #include <rmodule.h> |
| 25 | #include <arch/cpu.h> |
| 26 | #include <cpu/cpu.h> |
| 27 | #include <cpu/intel/microcode.h> |
| 28 | #include <cpu/x86/cache.h> |
| 29 | #include <cpu/x86/lapic.h> |
| 30 | #include <cpu/x86/msr.h> |
| 31 | #include <cpu/x86/mtrr.h> |
| 32 | #include <cpu/x86/smm.h> |
| 33 | #include <delay.h> |
| 34 | #include <device/device.h> |
| 35 | #include <device/path.h> |
| 36 | #include <lib.h> |
| 37 | #include <smp/atomic.h> |
| 38 | #include <smp/spinlock.h> |
| 39 | #include "haswell.h" |
| 40 | |
| 41 | /* This needs to match the layout in the .module_parametrs section. */ |
| 42 | struct sipi_params { |
| 43 | u16 gdtlimit; |
| 44 | u32 gdt; |
| 45 | u16 unused; |
| 46 | u32 idt_ptr; |
| 47 | u32 stack_top; |
| 48 | u32 stack_size; |
| 49 | u32 microcode_ptr; |
| 50 | u32 msr_table_ptr; |
| 51 | u32 msr_count; |
| 52 | u32 c_handler; |
| 53 | u32 c_handler_arg; |
| 54 | u8 apic_to_cpu_num[CONFIG_MAX_CPUS]; |
| 55 | } __attribute__((packed)); |
| 56 | |
| 57 | /* This also needs to match the assembly code for saved MSR encoding. */ |
| 58 | struct saved_msr { |
| 59 | u32 index; |
| 60 | u32 lo; |
| 61 | u32 hi; |
| 62 | } __attribute__((packed)); |
| 63 | |
| 64 | |
| 65 | /* The sipi vector rmodule is included in the ramstage using 'objdump -B'. */ |
| 66 | extern char _binary_sipi_vector_start[]; |
| 67 | /* These symbols are defined in c_start.S. */ |
| 68 | extern char gdt[]; |
| 69 | extern char gdt_limit[]; |
| 70 | extern char idtarg[]; |
| 71 | |
| 72 | /* This table keeps track of each CPU's APIC id. */ |
| 73 | static u8 apic_id_table[CONFIG_MAX_CPUS]; |
| 74 | static device_t cpu_devs[CONFIG_MAX_CPUS]; |
| 75 | |
| 76 | /* Number of APs checked that have checked in. */ |
| 77 | static atomic_t num_aps; |
| 78 | /* Barrier to stop APs from performing SMM relcoation. */ |
| 79 | static int smm_relocation_barrier_begin __attribute__ ((aligned (64))); |
| 80 | |
| 81 | static inline void wait_for_barrier(volatile int *barrier) |
| 82 | { |
| 83 | while (*barrier == 0) { |
| 84 | asm ("pause"); |
| 85 | } |
| 86 | } |
| 87 | |
| 88 | static inline void release_barrier(volatile int *barrier) |
| 89 | { |
| 90 | *barrier = 1; |
| 91 | } |
| 92 | |
| 93 | static void ap_wait_for_smm_relocation_begin(void) |
| 94 | { |
| 95 | wait_for_barrier(&smm_relocation_barrier_begin); |
| 96 | } |
| 97 | |
| 98 | |
| 99 | /* Returns 1 if timeout waiting for APs. 0 if target aps found. */ |
| 100 | static int wait_for_aps(int target, int total_delay, int delay_step) |
| 101 | { |
| 102 | int timeout = 0; |
| 103 | int delayed = 0; |
| 104 | while (atomic_read(&num_aps) != target) { |
| 105 | udelay(delay_step); |
| 106 | delayed += delay_step; |
| 107 | if (delayed >= total_delay) { |
| 108 | timeout = 1; |
| 109 | break; |
| 110 | } |
| 111 | } |
| 112 | |
| 113 | return timeout; |
| 114 | } |
| 115 | |
| 116 | void release_aps_for_smm_relocation(void) |
| 117 | { |
| 118 | release_barrier(&smm_relocation_barrier_begin); |
| 119 | } |
| 120 | |
| 121 | /* The mtrr code sets up ROM caching on the BSP, but not the others. However, |
| 122 | * the boot loader payload disables this. In order for Linux not to complain |
| 123 | * ensure the caching is disabled for tha APs before going to sleep. */ |
| 124 | static void cleanup_rom_caching(void) |
| 125 | { |
| 126 | #if CONFIG_CACHE_ROM |
| 127 | msr_t msr; |
| 128 | unsigned int last_var_mtrr; |
| 129 | |
| 130 | msr = rdmsr(MTRRcap_MSR); |
| 131 | last_var_mtrr = (msr.lo & 0xff) - 1; |
| 132 | |
| 133 | /* Check if the MTRR is valid. */ |
| 134 | msr = rdmsr(MTRRphysMask_MSR(last_var_mtrr)); |
| 135 | if ((msr.lo & MTRRphysMaskValid) == 0) |
| 136 | return; |
| 137 | msr = rdmsr(MTRRphysBase_MSR(last_var_mtrr)); |
| 138 | /* Assum that if the MTRR is of write protected type, the MTRR is used |
| 139 | * to cache the ROM. */ |
| 140 | if ((msr.lo & MTRR_NUM_TYPES) == MTRR_TYPE_WRPROT) { |
| 141 | msr.lo = msr.hi = 0; |
| 142 | disable_cache(); |
| 143 | wrmsr(MTRRphysMask_MSR(last_var_mtrr), msr); |
| 144 | wrmsr(MTRRphysBase_MSR(last_var_mtrr), msr); |
| 145 | enable_cache(); |
| 146 | } |
| 147 | #endif |
| 148 | } |
| 149 | |
| 150 | /* By the time APs call ap_init() caching has been setup, and microcode has |
| 151 | * been loaded. */ |
| 152 | static void ap_init(unsigned int cpu, void *microcode_ptr) |
| 153 | { |
| 154 | struct cpu_info *info; |
| 155 | |
| 156 | /* Signal that the AP has arrived. */ |
| 157 | atomic_inc(&num_aps); |
| 158 | |
| 159 | /* Ensure the local apic is enabled */ |
| 160 | enable_lapic(); |
| 161 | |
| 162 | info = cpu_info(); |
| 163 | info->index = cpu; |
| 164 | info->cpu = cpu_devs[cpu]; |
| 165 | |
| 166 | apic_id_table[info->index] = lapicid(); |
| 167 | info->cpu->path.apic.apic_id = apic_id_table[info->index]; |
| 168 | |
| 169 | /* Call through the cpu driver's initialization. */ |
| 170 | cpu_initialize(info->index); |
| 171 | |
| 172 | ap_wait_for_smm_relocation_begin(); |
| 173 | |
| 174 | smm_initiate_relocation(); |
| 175 | |
| 176 | /* After SMM relocation a 2nd microcode load is required. */ |
| 177 | intel_microcode_load_unlocked(microcode_ptr); |
| 178 | |
| 179 | /* Cleanup ROM caching. */ |
| 180 | cleanup_rom_caching(); |
| 181 | |
| 182 | /* FIXME(adurbin): park CPUs properly -- preferably somewhere in a |
| 183 | * reserved part of memory that the OS cannot get to. */ |
| 184 | stop_this_cpu(); |
| 185 | } |
| 186 | |
| 187 | static void setup_default_sipi_vector_params(struct sipi_params *sp) |
| 188 | { |
| 189 | int i; |
| 190 | |
| 191 | sp->gdt = (u32)&gdt; |
| 192 | sp->gdtlimit = (u32)&gdt_limit; |
| 193 | sp->idt_ptr = (u32)&idtarg; |
| 194 | sp->stack_size = CONFIG_STACK_SIZE; |
| 195 | sp->stack_top = (u32)&_estack; |
| 196 | /* Adjust the stack top to take into account cpu_info. */ |
| 197 | sp->stack_top -= sizeof(struct cpu_info); |
| 198 | /* Default to linear APIC id space. */ |
| 199 | for (i = 0; i < CONFIG_MAX_CPUS; i++) |
| 200 | sp->apic_to_cpu_num[i] = i; |
| 201 | } |
| 202 | |
| 203 | #define NUM_FIXED_MTRRS 11 |
| 204 | static unsigned int fixed_mtrrs[NUM_FIXED_MTRRS] = { |
| 205 | MTRRfix64K_00000_MSR, MTRRfix16K_80000_MSR, MTRRfix16K_A0000_MSR, |
| 206 | MTRRfix4K_C0000_MSR, MTRRfix4K_C8000_MSR, MTRRfix4K_D0000_MSR, |
| 207 | MTRRfix4K_D8000_MSR, MTRRfix4K_E0000_MSR, MTRRfix4K_E8000_MSR, |
| 208 | MTRRfix4K_F0000_MSR, MTRRfix4K_F8000_MSR, |
| 209 | }; |
| 210 | |
| 211 | static inline struct saved_msr *save_msr(int index, struct saved_msr *entry) |
| 212 | { |
| 213 | msr_t msr; |
| 214 | |
| 215 | msr = rdmsr(index); |
| 216 | entry->index = index; |
| 217 | entry->lo = msr.lo; |
| 218 | entry->hi = msr.hi; |
| 219 | |
| 220 | /* Return the next entry. */ |
| 221 | entry++; |
| 222 | return entry; |
| 223 | } |
| 224 | |
| 225 | static int save_bsp_msrs(char *start, int size) |
| 226 | { |
| 227 | int msr_count; |
| 228 | int num_var_mtrrs; |
| 229 | struct saved_msr *msr_entry; |
| 230 | int i; |
| 231 | msr_t msr; |
| 232 | |
| 233 | /* Determine number of MTRRs need to be saved. */ |
| 234 | msr = rdmsr(MTRRcap_MSR); |
| 235 | num_var_mtrrs = msr.lo & 0xff; |
| 236 | |
| 237 | /* 2 * num_var_mtrrs for base and mask. +1 for IA32_MTRR_DEF_TYPE. */ |
| 238 | msr_count = 2 * num_var_mtrrs + NUM_FIXED_MTRRS + 1; |
| 239 | |
| 240 | if ((msr_count * sizeof(struct saved_msr)) > size) { |
| 241 | printk(BIOS_CRIT, "Cannot mirror all %d msrs.\n", msr_count); |
| 242 | return -1; |
| 243 | } |
| 244 | |
| 245 | msr_entry = (void *)start; |
| 246 | for (i = 0; i < NUM_FIXED_MTRRS; i++) { |
| 247 | msr_entry = save_msr(fixed_mtrrs[i], msr_entry); |
| 248 | } |
| 249 | |
| 250 | for (i = 0; i < num_var_mtrrs; i++) { |
| 251 | msr_entry = save_msr(MTRRphysBase_MSR(i), msr_entry); |
| 252 | msr_entry = save_msr(MTRRphysMask_MSR(i), msr_entry); |
| 253 | } |
| 254 | |
| 255 | msr_entry = save_msr(MTRRdefType_MSR, msr_entry); |
| 256 | |
| 257 | return msr_count; |
| 258 | } |
| 259 | |
| 260 | /* The SIPI vector is loaded at the SMM_DEFAULT_BASE. The reason is at the |
| 261 | * memory range is already reserved so the OS cannot use it. That region is |
| 262 | * free to use for AP bringup before SMM is initialized. */ |
| 263 | static u32 sipi_vector_location = SMM_DEFAULT_BASE; |
| 264 | static int sipi_vector_location_size = SMM_DEFAULT_SIZE; |
| 265 | |
| 266 | static int load_sipi_vector(const void *microcode_patch) |
| 267 | { |
| 268 | struct rmodule sipi_mod; |
| 269 | int module_size; |
| 270 | int num_msrs; |
| 271 | struct sipi_params *sp; |
| 272 | char *mod_loc = (void *)sipi_vector_location; |
| 273 | const int loc_size = sipi_vector_location_size; |
| 274 | |
| 275 | if (rmodule_parse(&_binary_sipi_vector_start, &sipi_mod)) { |
| 276 | printk(BIOS_CRIT, "Unable to parse sipi module.\n"); |
| 277 | return -1; |
| 278 | } |
| 279 | |
| 280 | if (rmodule_entry_offset(&sipi_mod) != 0) { |
| 281 | printk(BIOS_CRIT, "SIPI module entry offset is not 0!\n"); |
| 282 | return -1; |
| 283 | } |
| 284 | |
| 285 | if (rmodule_load_alignment(&sipi_mod) != 4096) { |
| 286 | printk(BIOS_CRIT, "SIPI module load alignment(%d) != 4096.\n", |
| 287 | rmodule_load_alignment(&sipi_mod)); |
| 288 | return -1; |
| 289 | } |
| 290 | |
| 291 | module_size = rmodule_memory_size(&sipi_mod); |
| 292 | |
| 293 | /* Align to 4 bytes. */ |
| 294 | module_size += 3; |
| 295 | module_size &= ~3; |
| 296 | |
| 297 | if (module_size > loc_size) { |
| 298 | printk(BIOS_CRIT, "SIPI module size (%d) > region size (%d).\n", |
| 299 | module_size, loc_size); |
| 300 | return -1; |
| 301 | } |
| 302 | |
| 303 | num_msrs = save_bsp_msrs(&mod_loc[module_size], loc_size - module_size); |
| 304 | |
| 305 | if (num_msrs < 0) { |
| 306 | printk(BIOS_CRIT, "Error mirroring BSP's msrs.\n"); |
| 307 | return -1; |
| 308 | } |
| 309 | |
| 310 | if (rmodule_load(mod_loc, &sipi_mod)) { |
| 311 | printk(BIOS_CRIT, "Unable to load SIPI module.\n"); |
| 312 | return -1; |
| 313 | } |
| 314 | |
| 315 | sp = rmodule_parameters(&sipi_mod); |
| 316 | |
| 317 | if (sp == NULL) { |
| 318 | printk(BIOS_CRIT, "SIPI module has no parameters.\n"); |
| 319 | return -1; |
| 320 | } |
| 321 | |
| 322 | setup_default_sipi_vector_params(sp); |
| 323 | /* Setup MSR table. */ |
| 324 | sp->msr_table_ptr = (u32)&mod_loc[module_size]; |
| 325 | sp->msr_count = num_msrs; |
| 326 | /* Provide pointer to microcode patch. */ |
| 327 | sp->microcode_ptr = (u32)microcode_patch; |
| 328 | /* The microcode pointer is passed on through to the c handler so |
| 329 | * that it can be loaded again after SMM relocation. */ |
| 330 | sp->c_handler_arg = (u32)microcode_patch; |
| 331 | sp->c_handler = (u32)&ap_init; |
| 332 | |
| 333 | /* Make sure SIPI vector hits RAM so the APs that come up will see |
| 334 | * the startup code even if the caches are disabled. */ |
| 335 | wbinvd(); |
| 336 | |
| 337 | return 0; |
| 338 | } |
| 339 | |
| 340 | static int allocate_cpu_devices(struct bus *cpu_bus, int *total_hw_threads) |
| 341 | { |
| 342 | int i; |
| 343 | int num_threads; |
| 344 | int num_cores; |
| 345 | int max_cpus; |
| 346 | struct cpu_info *info; |
| 347 | msr_t msr; |
| 348 | |
| 349 | info = cpu_info(); |
| 350 | cpu_devs[info->index] = info->cpu; |
| 351 | apic_id_table[info->index] = info->cpu->path.apic.apic_id; |
| 352 | |
| 353 | msr = rdmsr(CORE_THREAD_COUNT_MSR); |
| 354 | num_threads = (msr.lo >> 0) & 0xffff; |
| 355 | num_cores = (msr.lo >> 16) & 0xffff; |
| 356 | printk(BIOS_DEBUG, "CPU has %u cores, %u threads enabled.\n", |
| 357 | num_cores, num_threads); |
| 358 | |
| 359 | max_cpus = num_threads; |
| 360 | *total_hw_threads = num_threads; |
| 361 | if (num_threads > CONFIG_MAX_CPUS) { |
| 362 | printk(BIOS_CRIT, "CPU count(%d) exceeds CONFIG_MAX_CPUS(%d)\n", |
| 363 | num_threads, CONFIG_MAX_CPUS); |
| 364 | max_cpus = CONFIG_MAX_CPUS; |
| 365 | } |
| 366 | |
| 367 | for (i = 1; i < max_cpus; i++) { |
| 368 | struct device_path cpu_path; |
| 369 | device_t new; |
| 370 | |
| 371 | /* Build the cpu device path */ |
| 372 | cpu_path.type = DEVICE_PATH_APIC; |
| 373 | cpu_path.apic.apic_id = info->cpu->path.apic.apic_id + i; |
| 374 | |
| 375 | /* Allocate the new cpu device structure */ |
| 376 | new = alloc_find_dev(cpu_bus, &cpu_path); |
| 377 | if (new == NULL) { |
| 378 | printk(BIOS_CRIT, "Could not allocte cpu device\n"); |
| 379 | max_cpus--; |
| 380 | } |
| 381 | cpu_devs[i] = new; |
| 382 | } |
| 383 | |
| 384 | return max_cpus; |
| 385 | } |
| 386 | |
| 387 | int setup_ap_init(struct bus *cpu_bus, int *max_cpus, |
| 388 | const void *microcode_patch) |
| 389 | { |
| 390 | int num_cpus; |
| 391 | int hw_threads; |
| 392 | |
| 393 | /* Default to currently running CPU. */ |
| 394 | num_cpus = allocate_cpu_devices(cpu_bus, &hw_threads); |
| 395 | |
| 396 | /* Load the SIPI vector. */ |
| 397 | if (load_sipi_vector(microcode_patch)) |
| 398 | return -1; |
| 399 | |
| 400 | *max_cpus = num_cpus; |
| 401 | |
| 402 | if (num_cpus < hw_threads) { |
| 403 | printk(BIOS_CRIT, |
| 404 | "ERROR: More HW threads (%d) than support (%d).\n", |
| 405 | hw_threads, num_cpus); |
| 406 | return -1; |
| 407 | } |
| 408 | |
| 409 | return 0; |
| 410 | } |
| 411 | |
| 412 | /* Returns 1 for timeout. 0 on success. */ |
| 413 | static int apic_wait_timeout(int total_delay, int delay_step) |
| 414 | { |
| 415 | int total = 0; |
| 416 | int timeout = 0; |
| 417 | |
| 418 | while (lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY) { |
| 419 | udelay(delay_step); |
| 420 | total += delay_step; |
| 421 | if (total >= total_delay) { |
| 422 | timeout = 1; |
| 423 | break; |
| 424 | } |
| 425 | } |
| 426 | |
| 427 | return timeout; |
| 428 | } |
| 429 | |
| 430 | int start_aps(struct bus *cpu_bus, int ap_count) |
| 431 | { |
| 432 | int sipi_vector; |
| 433 | |
| 434 | if (ap_count == 0) |
| 435 | return 0; |
| 436 | |
| 437 | /* The vector is sent as a 4k aligned address in one byte. */ |
| 438 | sipi_vector = sipi_vector_location >> 12; |
| 439 | |
| 440 | if (sipi_vector > 256) { |
| 441 | printk(BIOS_CRIT, "SIPI vector too large! 0x%08x\n", |
| 442 | sipi_vector); |
| 443 | return -1; |
| 444 | } |
| 445 | |
| 446 | printk(BIOS_DEBUG, "Attempting to start %d APs\n", ap_count); |
| 447 | |
| 448 | if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) { |
| 449 | printk(BIOS_DEBUG, "Waiting for ICR not to be busy..."); |
| 450 | if (apic_wait_timeout(1000 /* 1 ms */, 50)) { |
| 451 | printk(BIOS_DEBUG, "timed out. Aborting.\n"); |
| 452 | return -1; |
| 453 | } else |
| 454 | printk(BIOS_DEBUG, "done.\n"); |
| 455 | } |
| 456 | |
| 457 | /* Send INIT IPI to all but self. */ |
| 458 | lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); |
| 459 | lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | |
| 460 | LAPIC_DM_INIT); |
Aaron Durbin | 8c20399 | 2013-01-17 11:13:46 -0600 | [diff] [blame] | 461 | printk(BIOS_DEBUG, "Waiting for 10ms after sending INIT.\n"); |
| 462 | mdelay(10); |
Aaron Durbin | 305b1f0 | 2013-01-15 08:27:05 -0600 | [diff] [blame] | 463 | |
| 464 | /* Send 1st SIPI */ |
| 465 | if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) { |
| 466 | printk(BIOS_DEBUG, "Waiting for ICR not to be busy..."); |
| 467 | if (apic_wait_timeout(1000 /* 1 ms */, 50)) { |
| 468 | printk(BIOS_DEBUG, "timed out. Aborting.\n"); |
| 469 | return -1; |
| 470 | } else |
| 471 | printk(BIOS_DEBUG, "done.\n"); |
| 472 | } |
| 473 | |
| 474 | lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); |
| 475 | lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | |
| 476 | LAPIC_DM_STARTUP | sipi_vector); |
| 477 | printk(BIOS_DEBUG, "Waiting for 1st SIPI to complete..."); |
| 478 | if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) { |
| 479 | printk(BIOS_DEBUG, "timed out.\n"); |
| 480 | return -1; |
| 481 | } else { |
| 482 | printk(BIOS_DEBUG, "done.\n"); |
| 483 | } |
| 484 | /* Wait for CPUs to check in up to 200 us. */ |
| 485 | wait_for_aps(ap_count, 200 /* us */, 15 /* us */); |
| 486 | |
| 487 | /* Send 2nd SIPI */ |
| 488 | if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) { |
| 489 | printk(BIOS_DEBUG, "Waiting for ICR not to be busy..."); |
| 490 | if (apic_wait_timeout(1000 /* 1 ms */, 50)) { |
| 491 | printk(BIOS_DEBUG, "timed out. Aborting.\n"); |
| 492 | return -1; |
| 493 | } else |
| 494 | printk(BIOS_DEBUG, "done.\n"); |
| 495 | } |
| 496 | |
| 497 | lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(0)); |
| 498 | lapic_write_around(LAPIC_ICR, LAPIC_DEST_ALLBUT | LAPIC_INT_ASSERT | |
| 499 | LAPIC_DM_STARTUP | sipi_vector); |
| 500 | printk(BIOS_DEBUG, "Waiting for 2nd SIPI to complete..."); |
| 501 | if (apic_wait_timeout(10000 /* 10 ms */, 50 /* us */)) { |
| 502 | printk(BIOS_DEBUG, "timed out.\n"); |
| 503 | return -1; |
| 504 | } else { |
| 505 | printk(BIOS_DEBUG, "done.\n"); |
| 506 | } |
| 507 | |
| 508 | /* Wait for CPUs to check in. */ |
| 509 | if (wait_for_aps(ap_count, 10000 /* 10 ms */, 50 /* us */)) { |
| 510 | printk(BIOS_DEBUG, "Not all APs checked in: %d/%d.\n", |
| 511 | atomic_read(&num_aps), ap_count); |
| 512 | return -1; |
| 513 | } |
| 514 | |
| 515 | return 0; |
| 516 | } |
| 517 | |
| 518 | DECLARE_SPIN_LOCK(smm_relocation_lock); |
| 519 | |
| 520 | void smm_initiate_relocation(void) |
| 521 | { |
| 522 | spin_lock(&smm_relocation_lock); |
| 523 | |
| 524 | if ((lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY)) { |
| 525 | printk(BIOS_DEBUG, "Waiting for ICR not to be busy..."); |
| 526 | if (apic_wait_timeout(1000 /* 1 ms */, 50)) { |
| 527 | printk(BIOS_DEBUG, "timed out. Aborting.\n"); |
| 528 | spin_unlock(&smm_relocation_lock); |
| 529 | return; |
| 530 | } else |
| 531 | printk(BIOS_DEBUG, "done.\n"); |
| 532 | } |
| 533 | |
| 534 | lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(lapicid())); |
| 535 | lapic_write_around(LAPIC_ICR, LAPIC_INT_ASSERT | LAPIC_DM_SMI); |
| 536 | if (apic_wait_timeout(1000 /* 1 ms */, 100 /* us */)) { |
| 537 | printk(BIOS_DEBUG, "SMI Relocation timed out.\n"); |
| 538 | } else |
| 539 | printk(BIOS_DEBUG, "Relocation complete.\n"); |
| 540 | |
| 541 | spin_unlock(&smm_relocation_lock); |
| 542 | } |
| 543 | |