blob: 6370e703e88cce3692456680b809f119af6ea3e3 [file] [log] [blame]
Patrick Georgi2efc8802012-11-06 11:03:53 +01001/*
2 * This file is part of the coreboot project.
3 *
Patrick Georgi2efc8802012-11-06 11:03:53 +01004 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation; version 2 of
8 * the License.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
Patrick Georgi2efc8802012-11-06 11:03:53 +010014 */
15
Elyes HAOUASba9b5042019-12-19 07:47:52 +010016#include <commonlib/helpers.h>
Patrick Georgi2efc8802012-11-06 11:03:53 +010017#include <stdint.h>
18#include <arch/cpu.h>
Kyösti Mälkki13f66502019-03-03 08:01:05 +020019#include <device/mmio.h>
Kyösti Mälkkif1b58b72019-03-01 13:43:02 +020020#include <device/pci_ops.h>
Patrick Georgi2efc8802012-11-06 11:03:53 +010021#include <device/pci_def.h>
Patrick Rudolph266a1f72016-06-09 18:13:34 +020022#include <device/device.h>
Patrick Georgi2efc8802012-11-06 11:03:53 +010023#include <spd.h>
24#include <console/console.h>
25#include <lib.h>
Arthur Heymans10141c32016-10-27 00:31:41 +020026#include <delay.h>
Arthur Heymans049347f2017-05-12 11:54:08 +020027#include <timestamp.h>
Patrick Georgi2efc8802012-11-06 11:03:53 +010028#include "gm45.h"
Patrick Rudolph266a1f72016-06-09 18:13:34 +020029#include "chip.h"
Patrick Georgi2efc8802012-11-06 11:03:53 +010030
31static const gmch_gfx_t gmch_gfx_types[][5] = {
32/* MAX_667MHz MAX_533MHz MAX_400MHz MAX_333MHz MAX_800MHz */
33 { GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
34 { GMCH_GM47, GMCH_GM45, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_GM49 },
35 { GMCH_GE45, GMCH_GE45, GMCH_GE45, GMCH_GE45, GMCH_GE45 },
36 { GMCH_UNKNOWN, GMCH_GL43, GMCH_GL40, GMCH_UNKNOWN, GMCH_UNKNOWN },
37 { GMCH_UNKNOWN, GMCH_GS45, GMCH_GS40, GMCH_UNKNOWN, GMCH_UNKNOWN },
38 { GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
39 { GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
40 { GMCH_PM45, GMCH_PM45, GMCH_PM45, GMCH_PM45, GMCH_PM45 },
41};
42
43void get_gmch_info(sysinfo_t *sysinfo)
44{
45 sysinfo->stepping = pci_read_config8(PCI_DEV(0, 0, 0), PCI_CLASS_REVISION);
46 if ((sysinfo->stepping > STEPPING_B3) &&
47 (sysinfo->stepping != STEPPING_CONVERSION_A1))
48 die("Unknown stepping.\n");
49 if (sysinfo->stepping <= STEPPING_B3)
50 printk(BIOS_DEBUG, "Stepping %c%d\n", 'A' + sysinfo->stepping / 4, sysinfo->stepping % 4);
51 else
52 printk(BIOS_DEBUG, "Conversion stepping A1\n");
53
54 const u32 eax = cpuid_ext(0x04, 0).eax;
55 sysinfo->cores = ((eax >> 26) & 0x3f) + 1;
56 printk(BIOS_SPEW, "%d CPU cores\n", sysinfo->cores);
57
58 u32 capid = pci_read_config16(PCI_DEV(0, 0, 0), D0F0_CAPID0+8);
59 if (!(capid & (1<<(79-64)))) {
60 printk(BIOS_SPEW, "iTPM enabled\n");
61 }
62
63 capid = pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0+4);
64 if (!(capid & (1<<(57-32)))) {
65 printk(BIOS_SPEW, "ME enabled\n");
66 }
67
68 if (!(capid & (1<<(56-32)))) {
69 printk(BIOS_SPEW, "AMT enabled\n");
70 }
71
72 sysinfo->max_ddr2_mhz = (capid & (1<<(53-32)))?667:800;
73 printk(BIOS_SPEW, "capable of DDR2 of %d MHz or lower\n", sysinfo->max_ddr2_mhz);
74
75 if (!(capid & (1<<(48-32)))) {
76 printk(BIOS_SPEW, "VT-d enabled\n");
77 }
78
79 const u32 gfx_variant = (capid>>(42-32)) & 0x7;
80 const u32 render_freq = ((capid>>(50-32) & 0x1) << 2) | ((capid>>(35-32)) & 0x3);
81 if (render_freq <= 4)
82 sysinfo->gfx_type = gmch_gfx_types[gfx_variant][render_freq];
83 else
84 sysinfo->gfx_type = GMCH_UNKNOWN;
Patrick Georgi2efc8802012-11-06 11:03:53 +010085 switch (sysinfo->gfx_type) {
86 case GMCH_GM45:
87 printk(BIOS_SPEW, "GMCH: GM45\n");
88 break;
89 case GMCH_GM47:
90 printk(BIOS_SPEW, "GMCH: GM47\n");
91 break;
92 case GMCH_GM49:
93 printk(BIOS_SPEW, "GMCH: GM49\n");
94 break;
95 case GMCH_GE45:
96 printk(BIOS_SPEW, "GMCH: GE45\n");
97 break;
98 case GMCH_GL40:
99 printk(BIOS_SPEW, "GMCH: GL40\n");
100 break;
101 case GMCH_GL43:
102 printk(BIOS_SPEW, "GMCH: GL43\n");
103 break;
104 case GMCH_GS40:
105 printk(BIOS_SPEW, "GMCH: GS40\n");
106 break;
107 case GMCH_GS45:
Nico Huber5aaeb272015-12-30 00:17:27 +0100108 printk(BIOS_SPEW, "GMCH: GS45, using %s-power mode\n",
109 sysinfo->gs45_low_power_mode ? "low" : "high");
Patrick Georgi2efc8802012-11-06 11:03:53 +0100110 break;
111 case GMCH_PM45:
112 printk(BIOS_SPEW, "GMCH: PM45\n");
113 break;
114 case GMCH_UNKNOWN:
115 printk(BIOS_SPEW, "unknown GMCH\n");
116 break;
117 }
118
119 sysinfo->txt_enabled = !(capid & (1 << (37-32)));
120 if (sysinfo->txt_enabled) {
121 printk(BIOS_SPEW, "TXT enabled\n");
122 }
123
124 switch (render_freq) {
125 case 4:
126 sysinfo->max_render_mhz = 800;
127 break;
128 case 0:
129 sysinfo->max_render_mhz = 667;
130 break;
131 case 1:
132 sysinfo->max_render_mhz = 533;
133 break;
134 case 2:
135 sysinfo->max_render_mhz = 400;
136 break;
137 case 3:
138 sysinfo->max_render_mhz = 333;
139 break;
140 default:
141 printk(BIOS_SPEW, "Unknown render frequency\n");
142 sysinfo->max_render_mhz = 0;
143 break;
144 }
145 if (sysinfo->max_render_mhz != 0) {
146 printk(BIOS_SPEW, "Render frequency: %d MHz\n", sysinfo->max_render_mhz);
147 }
148
149 if (!(capid & (1<<(33-32)))) {
150 printk(BIOS_SPEW, "IGD enabled\n");
151 }
152
153 if (!(capid & (1<<(32-32)))) {
154 printk(BIOS_SPEW, "PCIe-to-GMCH enabled\n");
155 }
156
157 capid = pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0);
158
159 u32 ddr_cap = capid>>30 & 0x3;
160 switch (ddr_cap) {
161 case 0:
162 sysinfo->max_ddr3_mt = 1067;
163 break;
164 case 1:
165 sysinfo->max_ddr3_mt = 800;
166 break;
167 case 2:
168 case 3:
169 printk(BIOS_SPEW, "GMCH not DDR3 capable\n");
170 sysinfo->max_ddr3_mt = 0;
171 break;
172 }
173 if (sysinfo->max_ddr3_mt != 0) {
174 printk(BIOS_SPEW, "GMCH supports DDR3 with %d MT or less\n", sysinfo->max_ddr3_mt);
175 }
176
Martin Roth468d02c2019-10-23 21:44:42 -0600177 const unsigned int max_fsb = (capid >> 28) & 0x3;
Patrick Georgi2efc8802012-11-06 11:03:53 +0100178 switch (max_fsb) {
179 case 1:
180 sysinfo->max_fsb_mhz = 1067;
181 break;
182 case 2:
183 sysinfo->max_fsb_mhz = 800;
184 break;
185 case 3:
186 sysinfo->max_fsb_mhz = 667;
187 break;
188 default:
189 die("unknown FSB capability\n");
190 break;
191 }
192 if (sysinfo->max_fsb_mhz != 0) {
193 printk(BIOS_SPEW, "GMCH supports FSB with up to %d MHz\n", sysinfo->max_fsb_mhz);
194 }
195 sysinfo->max_fsb = max_fsb - 1;
196}
197
198/*
199 * Detect if the system went through an interrupted RAM init or is incon-
200 * sistent. If so, initiate a cold reboot. Otherwise mark the system to be
Martin Roth128c1042016-11-18 09:29:03 -0700201 * in RAM init, so this function would detect it on an erroneous reboot.
Patrick Georgi2efc8802012-11-06 11:03:53 +0100202 */
203void enter_raminit_or_reset(void)
204{
205 /* Interrupted RAM init or inconsistent system? */
206 u8 reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
207
208 if (reg8 & (1 << 2)) { /* S4-assertion-width violation */
209 /* Ignore S4-assertion-width violation like original BIOS. */
210 printk(BIOS_WARNING,
211 "WARNING: Ignoring S4-assertion-width violation.\n");
212 /* Bit2 is R/WC, so it will clear itself below. */
213 }
214
215 if (reg8 & (1 << 7)) { /* interrupted RAM init */
216 /* Don't enable S4-assertion stretch. Makes trouble on roda/rk9.
217 reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4);
218 pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8 | 0x08);
219 */
220
221 /* Clear bit7. */
222 pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 & ~(1 << 7));
223
224 printk(BIOS_INFO, "Interrupted RAM init, reset required.\n");
225 gm45_early_reset();
226 }
227 /* Mark system to be in RAM init. */
228 pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 | (1 << 7));
229}
230
231
232/* For a detected DIMM, test the value of an SPD byte to
233 match the expected value after masking some bits. */
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200234static int test_dimm(sysinfo_t *const sysinfo,
235 int dimm, int addr, int bitmask, int expected)
Patrick Georgi2efc8802012-11-06 11:03:53 +0100236{
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200237 return (smbus_read_byte(sysinfo->spd_map[dimm], addr) & bitmask) == expected;
Patrick Georgi2efc8802012-11-06 11:03:53 +0100238}
239
240/* This function dies if dimm is unsuitable for the chipset. */
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200241static void verify_ddr3_dimm(sysinfo_t *const sysinfo, int dimm)
Patrick Georgi2efc8802012-11-06 11:03:53 +0100242{
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200243 if (!test_dimm(sysinfo, dimm, 3, 15, 3))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100244 die("Chipset only supports SO-DIMM\n");
245
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200246 if (!test_dimm(sysinfo, dimm, 8, 0x18, 0))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100247 die("Chipset doesn't support ECC RAM\n");
248
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200249 if (!test_dimm(sysinfo, dimm, 7, 0x38, 0) &&
250 !test_dimm(sysinfo, dimm, 7, 0x38, 8))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100251 die("Chipset wants single or double sided DIMMs\n");
252
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200253 if (!test_dimm(sysinfo, dimm, 7, 7, 1) &&
254 !test_dimm(sysinfo, dimm, 7, 7, 2))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100255 die("Chipset requires x8 or x16 width\n");
256
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200257 if (!test_dimm(sysinfo, dimm, 4, 0x0f, 0) &&
258 !test_dimm(sysinfo, dimm, 4, 0x0f, 1) &&
259 !test_dimm(sysinfo, dimm, 4, 0x0f, 2) &&
260 !test_dimm(sysinfo, dimm, 4, 0x0f, 3))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100261 die("Chipset requires 256Mb, 512Mb, 1Gb or 2Gb chips.");
262
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200263 if (!test_dimm(sysinfo, dimm, 4, 0x70, 0))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100264 die("Chipset requires 8 banks on DDR3\n");
265
266 /* How to check if burst length is 8?
267 Other values are not supported, are they even possible? */
268
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200269 if (!test_dimm(sysinfo, dimm, 10, 0xff, 1))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100270 die("Code assumes 1/8ns MTB\n");
271
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200272 if (!test_dimm(sysinfo, dimm, 11, 0xff, 8))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100273 die("Code assumes 1/8ns MTB\n");
274
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200275 if (!test_dimm(sysinfo, dimm, 62, 0x9f, 0) &&
276 !test_dimm(sysinfo, dimm, 62, 0x9f, 1) &&
277 !test_dimm(sysinfo, dimm, 62, 0x9f, 2) &&
278 !test_dimm(sysinfo, dimm, 62, 0x9f, 3) &&
279 !test_dimm(sysinfo, dimm, 62, 0x9f, 5))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100280 die("Only raw card types A, B, C, D and F are supported.\n");
281}
282
283/* For every detected DIMM, test if it's suitable for the chipset. */
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200284static void verify_ddr3(sysinfo_t *const sysinfo, int mask)
Patrick Georgi2efc8802012-11-06 11:03:53 +0100285{
286 int cur = 0;
287 while (mask) {
288 if (mask & 1) {
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200289 verify_ddr3_dimm(sysinfo, cur);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100290 }
291 mask >>= 1;
292 cur++;
293 }
294}
295
296
297typedef struct {
298 int dimm_mask;
299 struct {
300 unsigned int rows;
301 unsigned int cols;
302 unsigned int chip_capacity;
303 unsigned int banks;
304 unsigned int ranks;
305 unsigned int cas_latencies;
306 unsigned int tAAmin;
307 unsigned int tCKmin;
308 unsigned int width;
309 unsigned int tRAS;
310 unsigned int tRP;
311 unsigned int tRCD;
312 unsigned int tWR;
313 unsigned int page_size;
314 unsigned int raw_card;
315 } channel[2];
316} spdinfo_t;
317/*
318 * This function collects RAM characteristics from SPD, assuming that RAM
319 * is generally within chipset's requirements, since verify_ddr3() passed.
320 */
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200321static void collect_ddr3(sysinfo_t *const sysinfo, spdinfo_t *const config)
Patrick Georgi2efc8802012-11-06 11:03:53 +0100322{
323 int mask = config->dimm_mask;
324 int cur = 0;
325 while (mask != 0) {
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200326 /* FIXME: support several dimms on same channel. */
327 if ((mask & 1) && sysinfo->spd_map[2 * cur]) {
Patrick Georgi2efc8802012-11-06 11:03:53 +0100328 int tmp;
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200329 const int smb_addr = sysinfo->spd_map[2 * cur];
Patrick Georgi2efc8802012-11-06 11:03:53 +0100330
331 config->channel[cur].rows = ((smbus_read_byte(smb_addr, 5) >> 3) & 7) + 12;
332 config->channel[cur].cols = (smbus_read_byte(smb_addr, 5) & 7) + 9;
333
334 config->channel[cur].chip_capacity = smbus_read_byte(smb_addr, 4) & 0xf;
335
336 config->channel[cur].banks = 8; /* GM45 only accepts this for DDR3.
337 verify_ddr3() fails for other values. */
338 config->channel[cur].ranks = ((smbus_read_byte(smb_addr, 7) >> 3) & 7) + 1;
339
340 config->channel[cur].cas_latencies =
341 ((smbus_read_byte(smb_addr, 15) << 8) | smbus_read_byte(smb_addr, 14))
342 << 4; /* so bit x is CAS x */
343 config->channel[cur].tAAmin = smbus_read_byte(smb_addr, 16); /* in MTB */
344 config->channel[cur].tCKmin = smbus_read_byte(smb_addr, 12); /* in MTB */
345
346 config->channel[cur].width = smbus_read_byte(smb_addr, 7) & 7;
347 config->channel[cur].page_size = config->channel[cur].width *
348 (1 << config->channel[cur].cols); /* in Bytes */
349
350 tmp = smbus_read_byte(smb_addr, 21);
351 config->channel[cur].tRAS = smbus_read_byte(smb_addr, 22) | ((tmp & 0xf) << 8);
352 config->channel[cur].tRP = smbus_read_byte(smb_addr, 20);
353 config->channel[cur].tRCD = smbus_read_byte(smb_addr, 18);
354 config->channel[cur].tWR = smbus_read_byte(smb_addr, 17);
355
356 config->channel[cur].raw_card = smbus_read_byte(smb_addr, 62) & 0x1f;
357 }
358 cur++;
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200359 mask >>= 2;
Patrick Georgi2efc8802012-11-06 11:03:53 +0100360 }
361}
362
Patrick Georgi2efc8802012-11-06 11:03:53 +0100363static fsb_clock_t read_fsb_clock(void)
364{
365 switch (MCHBAR32(CLKCFG_MCHBAR) & CLKCFG_FSBCLK_MASK) {
366 case 6:
367 return FSB_CLOCK_1067MHz;
368 case 2:
369 return FSB_CLOCK_800MHz;
370 case 3:
371 return FSB_CLOCK_667MHz;
372 default:
373 die("Unsupported FSB clock.\n");
374 }
375}
376static mem_clock_t clock_index(const unsigned int clock)
377{
378 switch (clock) {
379 case 533: return MEM_CLOCK_533MHz;
380 case 400: return MEM_CLOCK_400MHz;
381 case 333: return MEM_CLOCK_333MHz;
382 default: die("Unknown clock value.\n");
383 }
384 return -1; /* Won't be reached. */
385}
386static void normalize_clock(unsigned int *const clock)
387{
388 if (*clock >= 533)
389 *clock = 533;
390 else if (*clock >= 400)
391 *clock = 400;
392 else if (*clock >= 333)
393 *clock = 333;
394 else
395 *clock = 0;
396}
397static void lower_clock(unsigned int *const clock)
398{
399 --*clock;
400 normalize_clock(clock);
401}
402static unsigned int find_common_clock_cas(sysinfo_t *const sysinfo,
403 const spdinfo_t *const spdinfo)
404{
405 /* various constraints must be fulfilled:
406 CAS * tCK < 20ns == 160MTB
407 tCK_max >= tCK >= tCK_min
408 CAS >= roundup(tAA_min/tCK)
409 CAS supported
410 Clock(MHz) = 1000 / tCK(ns)
411 Clock(MHz) = 8000 / tCK(MTB)
412 AND BTW: Clock(MT) = 2000 / tCK(ns) - intel uses MTs but calls them MHz
413 */
414 int i;
415
416 /* Calculate common cas_latencies mask, tCKmin and tAAmin. */
417 unsigned int cas_latencies = (unsigned int)-1;
418 unsigned int tCKmin = 0, tAAmin = 0;
419 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
420 cas_latencies &= spdinfo->channel[i].cas_latencies;
421 if (spdinfo->channel[i].tCKmin > tCKmin)
422 tCKmin = spdinfo->channel[i].tCKmin;
423 if (spdinfo->channel[i].tAAmin > tAAmin)
424 tAAmin = spdinfo->channel[i].tAAmin;
425 }
426
427 /* Get actual value of fsb clock. */
428 sysinfo->selected_timings.fsb_clock = read_fsb_clock();
429 unsigned int fsb_mhz = 0;
430 switch (sysinfo->selected_timings.fsb_clock) {
431 case FSB_CLOCK_1067MHz: fsb_mhz = 1067; break;
432 case FSB_CLOCK_800MHz: fsb_mhz = 800; break;
433 case FSB_CLOCK_667MHz: fsb_mhz = 667; break;
434 }
435
436 unsigned int clock = 8000 / tCKmin;
437 if ((clock > sysinfo->max_ddr3_mt / 2) || (clock > fsb_mhz / 2)) {
Elyes HAOUASba9b5042019-12-19 07:47:52 +0100438 int new_clock = MIN(sysinfo->max_ddr3_mt / 2, fsb_mhz / 2);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100439 printk(BIOS_SPEW, "DIMMs support %d MHz, but chipset only runs at up to %d. Limiting...\n",
440 clock, new_clock);
441 clock = new_clock;
442 }
443 normalize_clock(&clock);
444
445 /* Find compatible clock / CAS pair. */
446 unsigned int tCKproposed;
447 unsigned int CAS;
448 while (1) {
449 if (!clock)
450 die("Couldn't find compatible clock / CAS settings.\n");
451 tCKproposed = 8000 / clock;
Elyes HAOUAS6df3b642018-11-26 22:53:49 +0100452 CAS = DIV_ROUND_UP(tAAmin, tCKproposed);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100453 printk(BIOS_SPEW, "Trying CAS %u, tCK %u.\n", CAS, tCKproposed);
454 for (; CAS <= DDR3_MAX_CAS; ++CAS)
455 if (cas_latencies & (1 << CAS))
456 break;
457 if ((CAS <= DDR3_MAX_CAS) && (CAS * tCKproposed < 160)) {
458 /* Found good CAS. */
459 printk(BIOS_SPEW, "Found compatible clock / CAS pair: %u / %u.\n", clock, CAS);
460 break;
461 }
462 lower_clock(&clock);
463 }
464 sysinfo->selected_timings.CAS = CAS;
465 sysinfo->selected_timings.mem_clock = clock_index(clock);
466
467 return tCKproposed;
468}
469
470static void calculate_derived_timings(sysinfo_t *const sysinfo,
471 const unsigned int tCLK,
472 const spdinfo_t *const spdinfo)
473{
474 int i;
475
476 /* Calculate common tRASmin, tRPmin, tRCDmin and tWRmin. */
477 unsigned int tRASmin = 0, tRPmin = 0, tRCDmin = 0, tWRmin = 0;
478 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
479 if (spdinfo->channel[i].tRAS > tRASmin)
480 tRASmin = spdinfo->channel[i].tRAS;
481 if (spdinfo->channel[i].tRP > tRPmin)
482 tRPmin = spdinfo->channel[i].tRP;
483 if (spdinfo->channel[i].tRCD > tRCDmin)
484 tRCDmin = spdinfo->channel[i].tRCD;
485 if (spdinfo->channel[i].tWR > tWRmin)
486 tWRmin = spdinfo->channel[i].tWR;
487 }
Elyes HAOUAS6df3b642018-11-26 22:53:49 +0100488 tRASmin = DIV_ROUND_UP(tRASmin, tCLK);
489 tRPmin = DIV_ROUND_UP(tRPmin, tCLK);
490 tRCDmin = DIV_ROUND_UP(tRCDmin, tCLK);
491 tWRmin = DIV_ROUND_UP(tWRmin, tCLK);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100492
493 /* Lookup tRFC and calculate common tRFCmin. */
494 const unsigned int tRFC_from_clock_and_cap[][4] = {
495 /* CAP_256M CAP_512M CAP_1G CAP_2G */
496 /* 533MHz */ { 40, 56, 68, 104 },
497 /* 400MHz */ { 30, 42, 51, 78 },
498 /* 333MHz */ { 25, 35, 43, 65 },
499 };
500 unsigned int tRFCmin = 0;
501 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
502 const unsigned int tRFC = tRFC_from_clock_and_cap
503 [sysinfo->selected_timings.mem_clock][spdinfo->channel[i].chip_capacity];
504 if (tRFC > tRFCmin)
505 tRFCmin = tRFC;
506 }
507
508 /* Calculate common tRD from CAS and FSB and DRAM clocks. */
509 unsigned int tRDmin = sysinfo->selected_timings.CAS;
510 switch (sysinfo->selected_timings.fsb_clock) {
511 case FSB_CLOCK_667MHz:
512 tRDmin += 1;
513 break;
514 case FSB_CLOCK_800MHz:
515 tRDmin += 2;
516 break;
517 case FSB_CLOCK_1067MHz:
518 tRDmin += 3;
519 if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT)
520 tRDmin += 1;
521 break;
522 }
523
524 /* Calculate common tRRDmin. */
525 unsigned int tRRDmin = 0;
526 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
527 unsigned int tRRD = 2 + (spdinfo->channel[i].page_size / 1024);
528 if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT)
529 tRRD += (spdinfo->channel[i].page_size / 1024);
530 if (tRRD > tRRDmin)
531 tRRDmin = tRRD;
532 }
533
534 /* Lookup and calculate common tFAWmin. */
535 unsigned int tFAW_from_pagesize_and_clock[][3] = {
536 /* 533MHz 400MHz 333MHz */
537 /* 1K */ { 20, 15, 13 },
538 /* 2K */ { 27, 20, 17 },
539 };
540 unsigned int tFAWmin = 0;
541 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
542 const unsigned int tFAW = tFAW_from_pagesize_and_clock
543 [spdinfo->channel[i].page_size / 1024 - 1]
544 [sysinfo->selected_timings.mem_clock];
545 if (tFAW > tFAWmin)
546 tFAWmin = tFAW;
547 }
548
549 /* Refresh rate is fixed. */
550 unsigned int tWL;
551 if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT) {
552 tWL = 6;
553 } else {
554 tWL = 5;
555 }
556
557 printk(BIOS_SPEW, "Timing values:\n"
558 " tCLK: %3u\n"
559 " tRAS: %3u\n"
560 " tRP: %3u\n"
561 " tRCD: %3u\n"
562 " tRFC: %3u\n"
563 " tWR: %3u\n"
564 " tRD: %3u\n"
565 " tRRD: %3u\n"
566 " tFAW: %3u\n"
567 " tWL: %3u\n",
568 tCLK, tRASmin, tRPmin, tRCDmin, tRFCmin, tWRmin, tRDmin, tRRDmin, tFAWmin, tWL);
569
570 sysinfo->selected_timings.tRAS = tRASmin;
571 sysinfo->selected_timings.tRP = tRPmin;
572 sysinfo->selected_timings.tRCD = tRCDmin;
573 sysinfo->selected_timings.tRFC = tRFCmin;
574 sysinfo->selected_timings.tWR = tWRmin;
575 sysinfo->selected_timings.tRD = tRDmin;
576 sysinfo->selected_timings.tRRD = tRRDmin;
577 sysinfo->selected_timings.tFAW = tFAWmin;
578 sysinfo->selected_timings.tWL = tWL;
579}
580
581static void collect_dimm_config(sysinfo_t *const sysinfo)
582{
583 int i;
584 spdinfo_t spdinfo;
585
586 spdinfo.dimm_mask = 0;
587 sysinfo->spd_type = 0;
588
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200589 for (i = 0; i < 4; i++)
590 if (sysinfo->spd_map[i]) {
591 const u8 spd = smbus_read_byte(sysinfo->spd_map[i], 2);
592 printk (BIOS_DEBUG, "%x:%x:%x\n",
593 i, sysinfo->spd_map[i],
594 spd);
595 if ((spd == 7) || (spd == 8) || (spd == 0xb)) {
596 spdinfo.dimm_mask |= 1 << i;
597 if (sysinfo->spd_type && sysinfo->spd_type != spd) {
598 die("Multiple types of DIMM installed in the system, don't do that!\n");
599 }
600 sysinfo->spd_type = spd;
Patrick Georgi2efc8802012-11-06 11:03:53 +0100601 }
Patrick Georgi2efc8802012-11-06 11:03:53 +0100602 }
Patrick Georgi2efc8802012-11-06 11:03:53 +0100603 if (spdinfo.dimm_mask == 0) {
604 die("Could not find any DIMM.\n");
605 }
606
607 /* Normalize spd_type to 1, 2, 3. */
608 sysinfo->spd_type = (sysinfo->spd_type & 1) | ((sysinfo->spd_type & 8) >> 2);
609 printk(BIOS_SPEW, "DDR mask %x, DDR %d\n", spdinfo.dimm_mask, sysinfo->spd_type);
610
611 if (sysinfo->spd_type == DDR2) {
612 die("DDR2 not supported at this time.\n");
613 } else if (sysinfo->spd_type == DDR3) {
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200614 verify_ddr3(sysinfo, spdinfo.dimm_mask);
615 collect_ddr3(sysinfo, &spdinfo);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100616 } else {
617 die("Will never support DDR1.\n");
618 }
619
620 for (i = 0; i < 2; i++) {
621 if ((spdinfo.dimm_mask >> (i*2)) & 1) {
622 printk(BIOS_SPEW, "Bank %d populated:\n"
623 " Raw card type: %4c\n"
624 " Row addr bits: %4u\n"
625 " Col addr bits: %4u\n"
626 " byte width: %4u\n"
627 " page size: %4u\n"
628 " banks: %4u\n"
629 " ranks: %4u\n"
630 " tAAmin: %3u\n"
631 " tCKmin: %3u\n"
632 " Max clock: %3u MHz\n"
633 " CAS: 0x%04x\n",
634 i, spdinfo.channel[i].raw_card + 'A',
635 spdinfo.channel[i].rows, spdinfo.channel[i].cols,
636 spdinfo.channel[i].width, spdinfo.channel[i].page_size,
637 spdinfo.channel[i].banks, spdinfo.channel[i].ranks,
638 spdinfo.channel[i].tAAmin, spdinfo.channel[i].tCKmin,
639 8000 / spdinfo.channel[i].tCKmin, spdinfo.channel[i].cas_latencies);
640 }
641 }
642
643 FOR_EACH_CHANNEL(i) {
644 sysinfo->dimms[i].card_type =
645 (spdinfo.dimm_mask & (1 << (i * 2))) ? spdinfo.channel[i].raw_card + 0xa : 0;
646 }
647
648 /* Find common memory clock and CAS. */
649 const unsigned int tCLK = find_common_clock_cas(sysinfo, &spdinfo);
650
651 /* Calculate other timings from clock and CAS. */
652 calculate_derived_timings(sysinfo, tCLK, &spdinfo);
653
654 /* Initialize DIMM infos. */
655 /* Always prefer interleaved over async channel mode. */
656 FOR_EACH_CHANNEL(i) {
657 IF_CHANNEL_POPULATED(sysinfo->dimms, i) {
658 sysinfo->dimms[i].banks = spdinfo.channel[i].banks;
659 sysinfo->dimms[i].ranks = spdinfo.channel[i].ranks;
660
661 /* .width is 1 for x8 or 2 for x16, bus width is 8 bytes. */
662 const unsigned int chips_per_rank = 8 / spdinfo.channel[i].width;
663
664 sysinfo->dimms[i].chip_width = spdinfo.channel[i].width;
665 sysinfo->dimms[i].chip_capacity = spdinfo.channel[i].chip_capacity;
666 sysinfo->dimms[i].page_size = spdinfo.channel[i].page_size * chips_per_rank;
667 sysinfo->dimms[i].rank_capacity_mb =
668 /* offset of chip_capacity is 8 (256M), therefore, add 8
669 chip_capacity is in Mbit, we want MByte, therefore, subtract 3 */
670 (1 << (spdinfo.channel[i].chip_capacity + 8 - 3)) * chips_per_rank;
671 }
672 }
673 if (CHANNEL_IS_POPULATED(sysinfo->dimms, 0) &&
674 CHANNEL_IS_POPULATED(sysinfo->dimms, 1))
675 sysinfo->selected_timings.channel_mode = CHANNEL_MODE_DUAL_INTERLEAVED;
676 else
677 sysinfo->selected_timings.channel_mode = CHANNEL_MODE_SINGLE;
678}
679
680static void reset_on_bad_warmboot(void)
681{
682 /* Check self refresh channel status. */
683 const u32 reg = MCHBAR32(PMSTS_MCHBAR);
684 /* Clear status bits. R/WC */
685 MCHBAR32(PMSTS_MCHBAR) = reg;
686 if ((reg & PMSTS_WARM_RESET) && !(reg & PMSTS_BOTH_SELFREFRESH)) {
687 printk(BIOS_INFO, "DRAM was not in self refresh "
688 "during warm boot, reset required.\n");
689 gm45_early_reset();
690 }
691}
692
693static void set_system_memory_frequency(const timings_t *const timings)
694{
695 MCHBAR16(CLKCFG_MCHBAR + 0x60) &= ~(1 << 15);
696 MCHBAR16(CLKCFG_MCHBAR + 0x48) &= ~(1 << 15);
697
698 /* Calculate wanted frequency setting. */
699 const int want_freq = 6 - timings->mem_clock;
700
701 /* Read current memory frequency. */
702 const u32 clkcfg = MCHBAR32(CLKCFG_MCHBAR);
703 int cur_freq = (clkcfg & CLKCFG_MEMCLK_MASK) >> CLKCFG_MEMCLK_SHIFT;
704 if (0 == cur_freq) {
705 /* Try memory frequency from scratchpad. */
706 printk(BIOS_DEBUG, "Reading current memory frequency from scratchpad.\n");
707 cur_freq = (MCHBAR16(SSKPD_MCHBAR) & SSKPD_CLK_MASK) >> SSKPD_CLK_SHIFT;
708 }
709
710 if (cur_freq != want_freq) {
711 printk(BIOS_DEBUG, "Changing memory frequency: old %x, new %x.\n", cur_freq, want_freq);
712 /* When writing new frequency setting, reset, then set update bit. */
713 MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~(CLKCFG_UPDATE | CLKCFG_MEMCLK_MASK)) |
714 (want_freq << CLKCFG_MEMCLK_SHIFT);
715 MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~CLKCFG_MEMCLK_MASK) |
716 (want_freq << CLKCFG_MEMCLK_SHIFT) | CLKCFG_UPDATE;
717 /* Reset update bit. */
718 MCHBAR32(CLKCFG_MCHBAR) &= ~CLKCFG_UPDATE;
719 }
720
721 if ((timings->fsb_clock == FSB_CLOCK_1067MHz) && (timings->mem_clock == MEM_CLOCK_667MT)) {
722 MCHBAR32(CLKCFG_MCHBAR + 0x16) = 0x000030f0;
723 MCHBAR32(CLKCFG_MCHBAR + 0x64) = 0x000050c1;
724
725 MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~(1 << 12)) | (1 << 17);
726 MCHBAR32(CLKCFG_MCHBAR) |= (1 << 17) | (1 << 12);
727 MCHBAR32(CLKCFG_MCHBAR) &= ~(1 << 12);
728
729 MCHBAR32(CLKCFG_MCHBAR + 0x04) = 0x9bad1f1f;
730 MCHBAR8(CLKCFG_MCHBAR + 0x08) = 0xf4;
731 MCHBAR8(CLKCFG_MCHBAR + 0x0a) = 0x43;
732 MCHBAR8(CLKCFG_MCHBAR + 0x0c) = 0x10;
733 MCHBAR8(CLKCFG_MCHBAR + 0x0d) = 0x80;
734 MCHBAR32(CLKCFG_MCHBAR + 0x50) = 0x0b0e151b;
735 MCHBAR8(CLKCFG_MCHBAR + 0x54) = 0xb4;
736 MCHBAR8(CLKCFG_MCHBAR + 0x55) = 0x10;
737 MCHBAR8(CLKCFG_MCHBAR + 0x56) = 0x08;
738
739 MCHBAR32(CLKCFG_MCHBAR) |= (1 << 10);
740 MCHBAR32(CLKCFG_MCHBAR) |= (1 << 11);
741 MCHBAR32(CLKCFG_MCHBAR) &= ~(1 << 10);
742 MCHBAR32(CLKCFG_MCHBAR) &= ~(1 << 11);
743 }
744
745 MCHBAR32(CLKCFG_MCHBAR + 0x48) |= 0x3f << 24;
746}
747
748int raminit_read_vco_index(void)
749{
Nico Huberd85a71a2016-11-27 14:43:12 +0100750 switch (MCHBAR8(HPLLVCO_MCHBAR) & 0x7) {
Patrick Georgi2efc8802012-11-06 11:03:53 +0100751 case VCO_2666:
752 return 0;
753 case VCO_3200:
754 return 1;
755 case VCO_4000:
756 return 2;
757 case VCO_5333:
758 return 3;
759 default:
760 die("Unknown VCO frequency.\n");
761 return 0;
762 }
763}
764static void set_igd_memory_frequencies(const sysinfo_t *const sysinfo)
765{
766 const int gfx_idx = ((sysinfo->gfx_type == GMCH_GS45) &&
767 !sysinfo->gs45_low_power_mode)
768 ? (GMCH_GS45 + 1) : sysinfo->gfx_type;
769
770 /* Render and sampler frequency values seem to be some kind of factor. */
771 const u16 render_freq_from_vco_and_gfxtype[][10] = {
772 /* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
773 /* VCO 2666 */ { 0xd, 0xd, 0xe, 0xd, 0xb, 0xd, 0xb, 0xa, 0xd },
774 /* VCO 3200 */ { 0xd, 0xe, 0xf, 0xd, 0xb, 0xd, 0xb, 0x9, 0xd },
775 /* VCO 4000 */ { 0xc, 0xd, 0xf, 0xc, 0xa, 0xc, 0xa, 0x9, 0xc },
776 /* VCO 5333 */ { 0xb, 0xc, 0xe, 0xb, 0x9, 0xb, 0x9, 0x8, 0xb },
777 };
778 const u16 sampler_freq_from_vco_and_gfxtype[][10] = {
779 /* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
780 /* VCO 2666 */ { 0xc, 0xc, 0xd, 0xc, 0x9, 0xc, 0x9, 0x8, 0xc },
781 /* VCO 3200 */ { 0xc, 0xd, 0xe, 0xc, 0x9, 0xc, 0x9, 0x8, 0xc },
782 /* VCO 4000 */ { 0xa, 0xc, 0xd, 0xa, 0x8, 0xa, 0x8, 0x8, 0xa },
783 /* VCO 5333 */ { 0xa, 0xa, 0xc, 0xa, 0x7, 0xa, 0x7, 0x6, 0xa },
784 };
785 const u16 display_clock_select_from_gfxtype[] = {
786 /* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
787 1, 1, 1, 1, 1, 1, 1, 0, 1
788 };
789
790 if (pci_read_config16(GCFGC_PCIDEV, 0) != 0x8086) {
791 printk(BIOS_DEBUG, "Skipping IGD memory frequency setting.\n");
792 return;
793 }
794
795 MCHBAR16(0x119e) = 0xa800;
796 MCHBAR16(0x11c0) = (MCHBAR16(0x11c0) & ~0xff00) | (0x01 << 8);
797 MCHBAR16(0x119e) = 0xb800;
798 MCHBAR8(0x0f10) |= 1 << 7;
799
800 /* Read VCO. */
801 const int vco_idx = raminit_read_vco_index();
802 printk(BIOS_DEBUG, "Setting IGD memory frequencies for VCO #%d.\n", vco_idx);
803
804 const u32 freqcfg =
805 ((render_freq_from_vco_and_gfxtype[vco_idx][gfx_idx]
806 << GCFGC_CR_SHIFT) & GCFGC_CR_MASK) |
807 ((sampler_freq_from_vco_and_gfxtype[vco_idx][gfx_idx]
808 << GCFGC_CS_SHIFT) & GCFGC_CS_MASK);
809
810 /* Set frequencies, clear update bit. */
811 u32 gcfgc = pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET);
812 gcfgc &= ~(GCFGC_CS_MASK | GCFGC_UPDATE | GCFGC_CR_MASK);
813 gcfgc |= freqcfg;
814 pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET, gcfgc);
815
816 /* Set frequencies, set update bit. */
817 gcfgc = pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET);
818 gcfgc &= ~(GCFGC_CS_MASK | GCFGC_CR_MASK);
819 gcfgc |= freqcfg | GCFGC_UPDATE;
820 pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET, gcfgc);
821
822 /* Clear update bit. */
823 pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET,
824 pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET) & ~GCFGC_UPDATE);
825
826 /* Set display clock select bit. */
827 pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET,
828 (pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET) & ~GCFGC_CD_MASK) |
829 (display_clock_select_from_gfxtype[gfx_idx] << GCFGC_CD_SHIFT));
830}
831
832static void configure_dram_control_mode(const timings_t *const timings, const dimminfo_t *const dimms)
833{
834 int ch, r;
835
836 FOR_EACH_CHANNEL(ch) {
837 unsigned int mchbar = CxDRC0_MCHBAR(ch);
838 u32 cxdrc = MCHBAR32(mchbar);
839 cxdrc &= ~CxDRC0_RANKEN_MASK;
840 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
841 cxdrc |= CxDRC0_RANKEN(r);
842 cxdrc = (cxdrc & ~CxDRC0_RMS_MASK) |
843 /* Always 7.8us for DDR3: */
844 CxDRC0_RMS_78US;
845 MCHBAR32(mchbar) = cxdrc;
846
847 mchbar = CxDRC1_MCHBAR(ch);
848 cxdrc = MCHBAR32(mchbar);
849 cxdrc |= CxDRC1_NOTPOP_MASK;
850 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
851 cxdrc &= ~CxDRC1_NOTPOP(r);
852 cxdrc |= CxDRC1_MUSTWR;
853 MCHBAR32(mchbar) = cxdrc;
854
855 mchbar = CxDRC2_MCHBAR(ch);
856 cxdrc = MCHBAR32(mchbar);
857 cxdrc |= CxDRC2_NOTPOP_MASK;
858 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
859 cxdrc &= ~CxDRC2_NOTPOP(r);
860 cxdrc |= CxDRC2_MUSTWR;
861 if (timings->mem_clock == MEM_CLOCK_1067MT)
862 cxdrc |= CxDRC2_CLK1067MT;
863 MCHBAR32(mchbar) = cxdrc;
864 }
865}
866
867static void rcomp_initialization(const stepping_t stepping, const int sff)
868{
Elyes HAOUAS3d450002018-08-09 18:55:58 +0200869 /* Program RCOMP codes. */
Patrick Georgi2efc8802012-11-06 11:03:53 +0100870 if (sff)
871 die("SFF platform unsupported in RCOMP initialization.\n");
872 /* Values are for DDR3. */
873 MCHBAR8(0x6ac) &= ~0x0f;
874 MCHBAR8(0x6b0) = 0x55;
875 MCHBAR8(0x6ec) &= ~0x0f;
876 MCHBAR8(0x6f0) = 0x66;
877 MCHBAR8(0x72c) &= ~0x0f;
878 MCHBAR8(0x730) = 0x66;
879 MCHBAR8(0x76c) &= ~0x0f;
880 MCHBAR8(0x770) = 0x66;
881 MCHBAR8(0x7ac) &= ~0x0f;
882 MCHBAR8(0x7b0) = 0x66;
883 MCHBAR8(0x7ec) &= ~0x0f;
884 MCHBAR8(0x7f0) = 0x66;
885 MCHBAR8(0x86c) &= ~0x0f;
886 MCHBAR8(0x870) = 0x55;
887 MCHBAR8(0x8ac) &= ~0x0f;
888 MCHBAR8(0x8b0) = 0x66;
889 /* ODT multiplier bits. */
890 MCHBAR32(0x04d0) = (MCHBAR32(0x04d0) & ~((7 << 3) | (7 << 0))) | (2 << 3) | (2 << 0);
891
892 /* Perform RCOMP calibration for DDR3. */
893 raminit_rcomp_calibration(stepping);
894
895 /* Run initial RCOMP. */
896 MCHBAR32(0x418) |= 1 << 17;
897 MCHBAR32(0x40c) &= ~(1 << 23);
898 MCHBAR32(0x41c) &= ~((1 << 7) | (1 << 3));
899 MCHBAR32(0x400) |= 1;
900 while (MCHBAR32(0x400) & 1) {}
901
902 /* Run second RCOMP. */
903 MCHBAR32(0x40c) |= 1 << 19;
904 MCHBAR32(0x400) |= 1;
905 while (MCHBAR32(0x400) & 1) {}
906
907 /* Cleanup and start periodic RCOMP. */
908 MCHBAR32(0x40c) &= ~(1 << 19);
909 MCHBAR32(0x40c) |= 1 << 23;
910 MCHBAR32(0x418) &= ~(1 << 17);
911 MCHBAR32(0x41c) |= (1 << 7) | (1 << 3);
912 MCHBAR32(0x400) |= (1 << 1);
913}
914
915static void dram_powerup(const int resume)
916{
Arthur Heymans10141c32016-10-27 00:31:41 +0200917 udelay(200);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100918 MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~(1 << 3)) | (3 << 21);
919 if (!resume) {
920 MCHBAR32(0x1434) |= (1 << 10);
Arthur Heymans10141c32016-10-27 00:31:41 +0200921 udelay(1);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100922 }
923 MCHBAR32(0x1434) |= (1 << 6);
924 if (!resume) {
Arthur Heymans10141c32016-10-27 00:31:41 +0200925 udelay(1);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100926 MCHBAR32(0x1434) |= (1 << 9);
927 MCHBAR32(0x1434) &= ~(1 << 10);
928 udelay(500);
929 }
930}
931static void dram_program_timings(const timings_t *const timings)
932{
933 /* Values are for DDR3. */
934 const int burst_length = 8;
935 const int tWTR = 4, tRTP = 1;
936 int i;
937
938 FOR_EACH_CHANNEL(i) {
939 u32 reg = MCHBAR32(CxDRT0_MCHBAR(i));
940 const int btb_wtp = timings->tWL + burst_length/2 + timings->tWR;
941 const int btb_wtr = timings->tWL + burst_length/2 + tWTR;
942 reg = (reg & ~(CxDRT0_BtB_WtP_MASK | CxDRT0_BtB_WtR_MASK)) |
943 ((btb_wtp << CxDRT0_BtB_WtP_SHIFT) & CxDRT0_BtB_WtP_MASK) |
944 ((btb_wtr << CxDRT0_BtB_WtR_SHIFT) & CxDRT0_BtB_WtR_MASK);
945 if (timings->mem_clock != MEM_CLOCK_1067MT) {
946 reg = (reg & ~(0x7 << 15)) | ((9 - timings->CAS) << 15);
947 reg = (reg & ~(0xf << 10)) | ((timings->CAS - 3) << 10);
948 } else {
949 reg = (reg & ~(0x7 << 15)) | ((10 - timings->CAS) << 15);
950 reg = (reg & ~(0xf << 10)) | ((timings->CAS - 4) << 10);
951 }
952 reg = (reg & ~(0x7 << 5)) | (3 << 5);
953 reg = (reg & ~(0x7 << 0)) | (1 << 0);
954 MCHBAR32(CxDRT0_MCHBAR(i)) = reg;
955
956 reg = MCHBAR32(CxDRT1_MCHBAR(i));
957 reg = (reg & ~(0x03 << 28)) | ((tRTP & 0x03) << 28);
958 reg = (reg & ~(0x1f << 21)) | ((timings->tRAS & 0x1f) << 21);
959 reg = (reg & ~(0x07 << 10)) | (((timings->tRRD - 2) & 0x07) << 10);
960 reg = (reg & ~(0x07 << 5)) | (((timings->tRCD - 2) & 0x07) << 5);
961 reg = (reg & ~(0x07 << 0)) | (((timings->tRP - 2) & 0x07) << 0);
962 MCHBAR32(CxDRT1_MCHBAR(i)) = reg;
963
964 reg = MCHBAR32(CxDRT2_MCHBAR(i));
965 reg = (reg & ~(0x1f << 17)) | ((timings->tFAW & 0x1f) << 17);
966 if (timings->mem_clock != MEM_CLOCK_1067MT) {
967 reg = (reg & ~(0x7 << 12)) | (0x2 << 12);
968 reg = (reg & ~(0xf << 6)) | (0x9 << 6);
969 } else {
970 reg = (reg & ~(0x7 << 12)) | (0x3 << 12);
971 reg = (reg & ~(0xf << 6)) | (0xc << 6);
972 }
973 reg = (reg & ~(0x1f << 0)) | (0x13 << 0);
974 MCHBAR32(CxDRT2_MCHBAR(i)) = reg;
975
976 reg = MCHBAR32(CxDRT3_MCHBAR(i));
977 reg |= 0x3 << 28;
978 reg = (reg & ~(0x03 << 26));
979 reg = (reg & ~(0x07 << 23)) | (((timings->CAS - 3) & 0x07) << 23);
980 reg = (reg & ~(0xff << 13)) | ((timings->tRFC & 0xff) << 13);
981 reg = (reg & ~(0x07 << 0)) | (((timings->tWL - 2) & 0x07) << 0);
982 MCHBAR32(CxDRT3_MCHBAR(i)) = reg;
983
984 reg = MCHBAR32(CxDRT4_MCHBAR(i));
985 static const u8 timings_by_clock[4][3] = {
986 /* 333MHz 400MHz 533MHz
987 667MT 800MT 1067MT */
988 { 0x07, 0x0a, 0x0d },
989 { 0x3a, 0x46, 0x5d },
990 { 0x0c, 0x0e, 0x18 },
991 { 0x21, 0x28, 0x35 },
992 };
993 const int clk_idx = 2 - timings->mem_clock;
994 reg = (reg & ~(0x01f << 27)) | (timings_by_clock[0][clk_idx] << 27);
995 reg = (reg & ~(0x3ff << 17)) | (timings_by_clock[1][clk_idx] << 17);
996 reg = (reg & ~(0x03f << 10)) | (timings_by_clock[2][clk_idx] << 10);
997 reg = (reg & ~(0x1ff << 0)) | (timings_by_clock[3][clk_idx] << 0);
998 MCHBAR32(CxDRT4_MCHBAR(i)) = reg;
999
1000 reg = MCHBAR32(CxDRT5_MCHBAR(i));
1001 if (timings->mem_clock == MEM_CLOCK_1067MT)
1002 reg = (reg & ~(0xf << 28)) | (0x8 << 28);
1003 reg = (reg & ~(0x00f << 22)) | ((burst_length/2 + timings->CAS + 2) << 22);
1004 reg = (reg & ~(0x3ff << 12)) | (0x190 << 12);
1005 reg = (reg & ~(0x00f << 4)) | ((timings->CAS - 2) << 4);
1006 reg = (reg & ~(0x003 << 2)) | (0x001 << 2);
1007 reg = (reg & ~(0x003 << 0));
1008 MCHBAR32(CxDRT5_MCHBAR(i)) = reg;
1009
1010 reg = MCHBAR32(CxDRT6_MCHBAR(i));
1011 reg = (reg & ~(0xffff << 16)) | (0x066a << 16); /* always 7.8us refresh rate for DDR3 */
1012 reg |= (1 << 2);
1013 MCHBAR32(CxDRT6_MCHBAR(i)) = reg;
1014 }
1015}
1016
1017static void dram_program_banks(const dimminfo_t *const dimms)
1018{
1019 int ch, r;
1020
1021 FOR_EACH_CHANNEL(ch) {
1022 const int tRPALL = dimms[ch].banks == 8;
1023
1024 u32 reg = MCHBAR32(CxDRT1_MCHBAR(ch)) & ~(0x01 << 15);
1025 IF_CHANNEL_POPULATED(dimms, ch)
1026 reg |= tRPALL << 15;
1027 MCHBAR32(CxDRT1_MCHBAR(ch)) = reg;
1028
1029 reg = MCHBAR32(CxDRA_MCHBAR(ch)) & ~CxDRA_BANKS_MASK;
1030 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) {
1031 reg |= CxDRA_BANKS(r, dimms[ch].banks);
1032 }
1033 MCHBAR32(CxDRA_MCHBAR(ch)) = reg;
1034 }
1035}
1036
1037static void odt_setup(const timings_t *const timings, const int sff)
1038{
1039 /* Values are for DDR3. */
1040 int ch;
1041
1042 FOR_EACH_CHANNEL(ch) {
1043 u32 reg = MCHBAR32(CxODT_HIGH(ch));
1044 if (sff && (timings->mem_clock != MEM_CLOCK_1067MT))
1045 reg &= ~(0x3 << (61 - 32));
1046 else
1047 reg |= 0x3 << (61 - 32);
1048 reg = (reg & ~(0x3 << (52 - 32))) | (0x2 << (52 - 32));
1049 reg = (reg & ~(0x7 << (48 - 32))) | ((timings->CAS - 3) << (48 - 32));
1050 reg = (reg & ~(0xf << (44 - 32))) | (0x7 << (44 - 32));
1051 if (timings->mem_clock != MEM_CLOCK_1067MT) {
1052 reg = (reg & ~(0xf << (40 - 32))) | ((12 - timings->CAS) << (40 - 32));
1053 reg = (reg & ~(0xf << (36 - 32))) | (( 2 + timings->CAS) << (36 - 32));
1054 } else {
1055 reg = (reg & ~(0xf << (40 - 32))) | ((13 - timings->CAS) << (40 - 32));
1056 reg = (reg & ~(0xf << (36 - 32))) | (( 1 + timings->CAS) << (36 - 32));
1057 }
1058 reg = (reg & ~(0xf << (32 - 32))) | (0x7 << (32 - 32));
1059 MCHBAR32(CxODT_HIGH(ch)) = reg;
1060
1061 reg = MCHBAR32(CxODT_LOW(ch));
1062 reg = (reg & ~(0x7 << 28)) | (0x2 << 28);
1063 reg = (reg & ~(0x3 << 22)) | (0x2 << 22);
1064 reg = (reg & ~(0x7 << 12)) | (0x2 << 12);
1065 reg = (reg & ~(0x7 << 4)) | (0x2 << 4);
1066 switch (timings->mem_clock) {
1067 case MEM_CLOCK_667MT:
1068 reg = (reg & ~0x7);
1069 break;
1070 case MEM_CLOCK_800MT:
1071 reg = (reg & ~0x7) | 0x2;
1072 break;
1073 case MEM_CLOCK_1067MT:
1074 reg = (reg & ~0x7) | 0x5;
1075 break;
1076 }
1077 MCHBAR32(CxODT_LOW(ch)) = reg;
1078 }
1079}
1080
1081static void misc_settings(const timings_t *const timings,
1082 const stepping_t stepping)
1083{
1084 MCHBAR32(0x1260) = (MCHBAR32(0x1260) & ~((1 << 24) | 0x1f)) | timings->tRD;
1085 MCHBAR32(0x1360) = (MCHBAR32(0x1360) & ~((1 << 24) | 0x1f)) | timings->tRD;
1086
1087 MCHBAR8(0x1268) = (MCHBAR8(0x1268) & ~(0xf)) | timings->tWL;
1088 MCHBAR8(0x1368) = (MCHBAR8(0x1368) & ~(0xf)) | timings->tWL;
1089 MCHBAR8(0x12a0) = (MCHBAR8(0x12a0) & ~(0xf)) | 0xa;
1090 MCHBAR8(0x13a0) = (MCHBAR8(0x13a0) & ~(0xf)) | 0xa;
1091
1092 MCHBAR32(0x218) = (MCHBAR32(0x218) & ~((7 << 29) | (7 << 25) | (3 << 22) | (3 << 10))) |
1093 (4 << 29) | (3 << 25) | (0 << 22) | (1 << 10);
1094 MCHBAR32(0x220) = (MCHBAR32(0x220) & ~(7 << 16)) | (1 << 21) | (1 << 16);
1095 MCHBAR32(0x224) = (MCHBAR32(0x224) & ~(7 << 8)) | (3 << 8);
1096 if (stepping >= STEPPING_B1)
1097 MCHBAR8(0x234) |= (1 << 3);
1098}
1099
1100static void clock_crossing_setup(const fsb_clock_t fsb,
1101 const mem_clock_t ddr3clock,
1102 const dimminfo_t *const dimms)
1103{
1104 int ch;
1105
1106 static const u32 values_from_fsb_and_mem[][3][4] = {
1107 /* FSB 1067MHz */{
1108 /* DDR3-1067 */ { 0x00000000, 0x00000000, 0x00180006, 0x00810060 },
1109 /* DDR3-800 */ { 0x00000000, 0x00000000, 0x0000001c, 0x000300e0 },
1110 /* DDR3-667 */ { 0x00000000, 0x00001c00, 0x03c00038, 0x0007e000 },
1111 },
1112 /* FSB 800MHz */{
1113 /* DDR3-1067 */ { 0, 0, 0, 0 },
1114 /* DDR3-800 */ { 0x00000000, 0x00000000, 0x0030000c, 0x000300c0 },
1115 /* DDR3-667 */ { 0x00000000, 0x00000380, 0x0060001c, 0x00030c00 },
1116 },
1117 /* FSB 667MHz */{
1118 /* DDR3-1067 */ { 0, 0, 0, 0 },
1119 /* DDR3-800 */ { 0, 0, 0, 0 },
1120 /* DDR3-667 */ { 0x00000000, 0x00000000, 0x0030000c, 0x000300c0 },
1121 },
1122 };
1123
1124 const u32 *data = values_from_fsb_and_mem[fsb][ddr3clock];
1125 MCHBAR32(0x0208) = data[3];
1126 MCHBAR32(0x020c) = data[2];
1127 if (((fsb == FSB_CLOCK_1067MHz) || (fsb == FSB_CLOCK_800MHz)) && (ddr3clock == MEM_CLOCK_667MT))
1128 MCHBAR32(0x0210) = data[1];
1129
1130 static const u32 from_fsb_and_mem[][3] = {
1131 /* DDR3-1067 DDR3-800 DDR3-667 */
1132 /* FSB 1067MHz */{ 0x40100401, 0x10040220, 0x08040110, },
1133 /* FSB 800MHz */{ 0x00000000, 0x40100401, 0x00080201, },
1134 /* FSB 667MHz */{ 0x00000000, 0x00000000, 0x40100401, },
1135 };
1136 FOR_EACH_CHANNEL(ch) {
1137 const unsigned int mchbar = 0x1258 + (ch * 0x0100);
1138 if ((fsb == FSB_CLOCK_1067MHz) && (ddr3clock == MEM_CLOCK_800MT) && CHANNEL_IS_CARDF(dimms, ch))
1139 MCHBAR32(mchbar) = 0x08040120;
1140 else
1141 MCHBAR32(mchbar) = from_fsb_and_mem[fsb][ddr3clock];
1142 MCHBAR32(mchbar + 4) = 0x00000000;
1143 }
1144}
1145
1146/* Program egress VC1 timings. */
1147static void vc1_program_timings(const fsb_clock_t fsb)
1148{
1149 const u32 timings_by_fsb[][2] = {
1150 /* FSB 1067MHz */ { 0x1a, 0x01380138 },
1151 /* FSB 800MHz */ { 0x14, 0x00f000f0 },
1152 /* FSB 667MHz */ { 0x10, 0x00c000c0 },
1153 };
1154 EPBAR8(0x2c) = timings_by_fsb[fsb][0];
1155 EPBAR32(0x38) = timings_by_fsb[fsb][1];
1156 EPBAR32(0x3c) = timings_by_fsb[fsb][1];
1157}
1158
Patrick Rudolph266a1f72016-06-09 18:13:34 +02001159#define DEFAULT_PCI_MMIO_SIZE 2048
1160#define HOST_BRIDGE PCI_DEVFN(0, 0)
1161
1162static unsigned int get_mmio_size(void)
1163{
1164 const struct device *dev;
1165 const struct northbridge_intel_gm45_config *cfg = NULL;
1166
Kyösti Mälkkie7377552018-06-21 16:20:55 +03001167 dev = pcidev_path_on_root(HOST_BRIDGE);
Patrick Rudolph266a1f72016-06-09 18:13:34 +02001168 if (dev)
1169 cfg = dev->chip_info;
1170
1171 /* If this is zero, it just means devicetree.cb didn't set it */
1172 if (!cfg || cfg->pci_mmio_size == 0)
1173 return DEFAULT_PCI_MMIO_SIZE;
1174 else
1175 return cfg->pci_mmio_size;
1176}
1177
Patrick Georgi2efc8802012-11-06 11:03:53 +01001178/* @prejedec if not zero, set rank size to 128MB and page size to 4KB. */
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001179static void program_memory_map(const dimminfo_t *const dimms, const channel_mode_t mode, const int prejedec, u16 ggc)
Patrick Georgi2efc8802012-11-06 11:03:53 +01001180{
1181 int ch, r;
1182
1183 /* Program rank boundaries (CxDRBy). */
1184 unsigned int base = 0; /* start of next rank in MB */
1185 unsigned int total_mb[2] = { 0, 0 }; /* total memory per channel in MB */
1186 FOR_EACH_CHANNEL(ch) {
1187 if (mode == CHANNEL_MODE_DUAL_INTERLEAVED)
1188 /* In interleaved mode, start every channel from 0. */
1189 base = 0;
1190 for (r = 0; r < RANKS_PER_CHANNEL; r += 2) {
1191 /* Fixed capacity for pre-jedec config. */
1192 const unsigned int rank_capacity_mb =
1193 prejedec ? 128 : dimms[ch].rank_capacity_mb;
1194 u32 reg = 0;
1195
1196 /* Program bounds in CxDRBy. */
1197 IF_RANK_POPULATED(dimms, ch, r) {
1198 base += rank_capacity_mb;
1199 total_mb[ch] += rank_capacity_mb;
1200 }
1201 reg |= CxDRBy_BOUND_MB(r, base);
1202 IF_RANK_POPULATED(dimms, ch, r+1) {
1203 base += rank_capacity_mb;
1204 total_mb[ch] += rank_capacity_mb;
1205 }
1206 reg |= CxDRBy_BOUND_MB(r+1, base);
1207
1208 MCHBAR32(CxDRBy_MCHBAR(ch, r)) = reg;
1209 }
1210 }
1211
1212 /* Program page size (CxDRA). */
1213 FOR_EACH_CHANNEL(ch) {
1214 u32 reg = MCHBAR32(CxDRA_MCHBAR(ch)) & ~CxDRA_PAGESIZE_MASK;
1215 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) {
1216 /* Fixed page size for pre-jedec config. */
1217 const unsigned int page_size = /* dimm page size in bytes */
1218 prejedec ? 4096 : dimms[ch].page_size;
1219 reg |= CxDRA_PAGESIZE(r, log2(page_size));
1220 /* deferred to f5_27: reg |= CxDRA_BANKS(r, dimms[ch].banks); */
1221 }
1222 MCHBAR32(CxDRA_MCHBAR(ch)) = reg;
1223 }
1224
1225 /* Calculate memory mapping, all values in MB. */
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001226
1227 u32 uma_sizem = 0;
1228 if (!prejedec) {
1229 if (!(ggc & 2)) {
1230 printk(BIOS_DEBUG, "IGD decoded, subtracting ");
1231
1232 /* Graphics memory */
1233 const u32 gms_sizek = decode_igd_memory_size((ggc >> 4) & 0xf);
1234 printk(BIOS_DEBUG, "%uM UMA", gms_sizek >> 10);
1235
1236 /* GTT Graphics Stolen Memory Size (GGMS) */
1237 const u32 gsm_sizek = decode_igd_gtt_size((ggc >> 8) & 0xf);
1238 printk(BIOS_DEBUG, " and %uM GTT\n", gsm_sizek >> 10);
1239
1240 uma_sizem = (gms_sizek + gsm_sizek) >> 10;
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001241 }
Arthur Heymansd522db02018-08-06 15:50:54 +02001242 /* TSEG 2M, This amount can easily be covered by SMRR MTRR's,
1243 which requires to have TSEG_BASE aligned to TSEG_SIZE. */
Arthur Heymans8b766052018-01-24 23:25:13 +01001244 u8 reg8 = pci_read_config8(PCI_DEV(0, 0, 0), D0F0_ESMRAMC);
1245 reg8 &= ~0x7;
Arthur Heymansd522db02018-08-06 15:50:54 +02001246 reg8 |= (1 << 1) | (1 << 0); /* 2M and TSEG_Enable */
Arthur Heymans8b766052018-01-24 23:25:13 +01001247 pci_write_config8(PCI_DEV(0, 0, 0), D0F0_ESMRAMC, reg8);
Arthur Heymansd522db02018-08-06 15:50:54 +02001248 uma_sizem += 2;
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001249 }
1250
Patrick Rudolph266a1f72016-06-09 18:13:34 +02001251 const unsigned int mmio_size = get_mmio_size();
1252 const unsigned int MMIOstart = 4096 - mmio_size + uma_sizem;
Vladimir Serbinenko9907be42014-08-12 21:51:28 +02001253 const int me_active = pci_read_config8(PCI_DEV(0, 3, 0), PCI_CLASS_REVISION) != 0xff;
1254 const unsigned int ME_SIZE = prejedec || !me_active ? 0 : 32;
Patrick Georgi2efc8802012-11-06 11:03:53 +01001255 const unsigned int usedMEsize = (total_mb[0] != total_mb[1]) ? ME_SIZE : 2 * ME_SIZE;
1256 const unsigned int claimCapable =
1257 !(pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0 + 4) & (1 << (47 - 32)));
1258
1259 const unsigned int TOM = total_mb[0] + total_mb[1];
1260 unsigned int TOMminusME = TOM - usedMEsize;
1261 unsigned int TOLUD = (TOMminusME < MMIOstart) ? TOMminusME : MMIOstart;
1262 unsigned int TOUUD = TOMminusME;
1263 unsigned int REMAPbase = 0xffff, REMAPlimit = 0;
1264
1265 if (claimCapable && (TOMminusME >= (MMIOstart + 64))) {
1266 /* 64MB alignment: We'll lose some MBs here, if ME is on. */
1267 TOMminusME &= ~(64 - 1);
1268 /* 64MB alignment: Loss will be reclaimed. */
1269 TOLUD &= ~(64 - 1);
1270 if (TOMminusME > 4096) {
1271 REMAPbase = TOMminusME;
1272 REMAPlimit = REMAPbase + (4096 - TOLUD);
1273 } else {
1274 REMAPbase = 4096;
1275 REMAPlimit = REMAPbase + (TOMminusME - TOLUD);
1276 }
1277 TOUUD = REMAPlimit;
1278 /* REMAPlimit is an inclusive bound, all others exclusive. */
1279 REMAPlimit -= 64;
1280 }
1281
1282 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOM, (TOM >> 7) & 0x1ff);
1283 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOLUD, TOLUD << 4);
1284 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOUUD, TOUUD);
1285 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_REMAPBASE, (REMAPbase >> 6) & 0x03ff);
1286 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_REMAPLIMIT, (REMAPlimit >> 6) & 0x03ff);
1287
1288 /* Program channel mode. */
1289 switch (mode) {
1290 case CHANNEL_MODE_SINGLE:
1291 printk(BIOS_DEBUG, "Memory configured in single-channel mode.\n");
1292 MCHBAR32(DCC_MCHBAR) &= ~DCC_INTERLEAVED;
1293 break;
1294 case CHANNEL_MODE_DUAL_ASYNC:
Elyes HAOUASc9a717d2020-02-16 09:52:09 +01001295 printk(BIOS_DEBUG, "Memory configured in dual-channel asymmetric mode.\n");
Patrick Georgi2efc8802012-11-06 11:03:53 +01001296 MCHBAR32(DCC_MCHBAR) &= ~DCC_INTERLEAVED;
1297 break;
1298 case CHANNEL_MODE_DUAL_INTERLEAVED:
1299 printk(BIOS_DEBUG, "Memory configured in dual-channel interleaved mode.\n");
1300 MCHBAR32(DCC_MCHBAR) &= ~(DCC_NO_CHANXOR | (1 << 9));
1301 MCHBAR32(DCC_MCHBAR) |= DCC_INTERLEAVED;
1302 break;
1303 }
1304
1305 printk(BIOS_SPEW, "Memory map:\n"
1306 "TOM = %5uMB\n"
1307 "TOLUD = %5uMB\n"
1308 "TOUUD = %5uMB\n"
1309 "REMAP:\t base = %5uMB\n"
Vladimir Serbinenko9907be42014-08-12 21:51:28 +02001310 "\t limit = %5uMB\n"
1311 "usedMEsize: %dMB\n",
1312 TOM, TOLUD, TOUUD, REMAPbase, REMAPlimit, usedMEsize);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001313}
1314static void prejedec_memory_map(const dimminfo_t *const dimms, channel_mode_t mode)
1315{
1316 /* Never use dual-interleaved mode in pre-jedec config. */
1317 if (CHANNEL_MODE_DUAL_INTERLEAVED == mode)
1318 mode = CHANNEL_MODE_DUAL_ASYNC;
1319
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001320 program_memory_map(dimms, mode, 1, 0);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001321 MCHBAR32(DCC_MCHBAR) |= DCC_NO_CHANXOR;
1322}
1323
1324static void ddr3_select_clock_mux(const mem_clock_t ddr3clock,
1325 const dimminfo_t *const dimms,
1326 const stepping_t stepping)
1327{
1328 const int clk1067 = (ddr3clock == MEM_CLOCK_1067MT);
1329 const int cardF[] = { CHANNEL_IS_CARDF(dimms, 0), CHANNEL_IS_CARDF(dimms, 1) };
1330
1331 int ch;
1332
1333 if (stepping < STEPPING_B1)
1334 die("Stepping <B1 unsupported in clock-multiplexer selection.\n");
1335
1336 FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
1337 int mixed = 0;
1338 if ((1 == ch) && (!CHANNEL_IS_POPULATED(dimms, 0) || (cardF[0] != cardF[1])))
1339 mixed = 4 << 11;
1340 const unsigned int b = 0x14b0 + (ch * 0x0100);
1341 MCHBAR32(b+0x1c) = (MCHBAR32(b+0x1c) & ~(7 << 11)) |
1342 ((( cardF[ch])?1:0) << 11) | mixed;
1343 MCHBAR32(b+0x18) = (MCHBAR32(b+0x18) & ~(7 << 11)) | mixed;
1344 MCHBAR32(b+0x14) = (MCHBAR32(b+0x14) & ~(7 << 11)) |
1345 (((!clk1067 && !cardF[ch])?0:1) << 11) | mixed;
1346 MCHBAR32(b+0x10) = (MCHBAR32(b+0x10) & ~(7 << 11)) |
1347 ((( clk1067 && !cardF[ch])?1:0) << 11) | mixed;
1348 MCHBAR32(b+0x0c) = (MCHBAR32(b+0x0c) & ~(7 << 11)) |
1349 ((( cardF[ch])?3:2) << 11) | mixed;
1350 MCHBAR32(b+0x08) = (MCHBAR32(b+0x08) & ~(7 << 11)) |
1351 (2 << 11) | mixed;
1352 MCHBAR32(b+0x04) = (MCHBAR32(b+0x04) & ~(7 << 11)) |
1353 (((!clk1067 && !cardF[ch])?2:3) << 11) | mixed;
1354 MCHBAR32(b+0x00) = (MCHBAR32(b+0x00) & ~(7 << 11)) |
1355 ((( clk1067 && !cardF[ch])?3:2) << 11) | mixed;
1356 }
1357}
1358static void ddr3_write_io_init(const mem_clock_t ddr3clock,
1359 const dimminfo_t *const dimms,
1360 const stepping_t stepping,
1361 const int sff)
1362{
1363 const int a1step = stepping >= STEPPING_CONVERSION_A1;
1364 const int cardF[] = { CHANNEL_IS_CARDF(dimms, 0), CHANNEL_IS_CARDF(dimms, 1) };
1365
1366 int ch;
1367
1368 if (stepping < STEPPING_B1)
1369 die("Stepping <B1 unsupported in write i/o initialization.\n");
1370 if (sff)
1371 die("SFF platform unsupported in write i/o initialization.\n");
1372
1373 static const u32 ddr3_667_800_by_stepping_ddr3_and_card[][2][2][4] = {
1374 { /* Stepping B3 and below */
1375 { /* 667 MHz */
1376 { 0xa3255008, 0x26888209, 0x26288208, 0x6188040f },
1377 { 0x7524240b, 0xa5255608, 0x232b8508, 0x5528040f },
1378 },
1379 { /* 800 MHz */
1380 { 0xa6255308, 0x26888209, 0x212b7508, 0x6188040f },
1381 { 0x7524240b, 0xa6255708, 0x132b7508, 0x5528040f },
1382 },
1383 },
1384 { /* Conversion stepping A1 and above */
1385 { /* 667 MHz */
1386 { 0xc5257208, 0x26888209, 0x26288208, 0x6188040f },
1387 { 0x7524240b, 0xc5257608, 0x232b8508, 0x5528040f },
1388 },
1389 { /* 800 MHz */
1390 { 0xb6256308, 0x26888209, 0x212b7508, 0x6188040f },
1391 { 0x7524240b, 0xb6256708, 0x132b7508, 0x5528040f },
1392 }
1393 }};
1394
1395 static const u32 ddr3_1067_by_channel_and_card[][2][4] = {
1396 { /* Channel A */
1397 { 0xb2254708, 0x002b7408, 0x132b8008, 0x7228060f },
1398 { 0xb0255008, 0xa4254108, 0x4528b409, 0x9428230f },
1399 },
1400 { /* Channel B */
1401 { 0xa4254208, 0x022b6108, 0x132b8208, 0x9228210f },
1402 { 0x6024140b, 0x92244408, 0x252ba409, 0x9328360c },
1403 },
1404 };
1405
1406 FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
1407 if ((1 == ch) && CHANNEL_IS_POPULATED(dimms, 0) && (cardF[0] == cardF[1]))
1408 /* Only write if second channel population differs. */
1409 continue;
1410 const u32 *const data = (ddr3clock != MEM_CLOCK_1067MT)
1411 ? ddr3_667_800_by_stepping_ddr3_and_card[a1step][2 - ddr3clock][cardF[ch]]
1412 : ddr3_1067_by_channel_and_card[ch][cardF[ch]];
1413 MCHBAR32(CxWRTy_MCHBAR(ch, 0)) = data[0];
1414 MCHBAR32(CxWRTy_MCHBAR(ch, 1)) = data[1];
1415 MCHBAR32(CxWRTy_MCHBAR(ch, 2)) = data[2];
1416 MCHBAR32(CxWRTy_MCHBAR(ch, 3)) = data[3];
1417 }
1418
1419 MCHBAR32(0x1490) = 0x00e70067;
1420 MCHBAR32(0x1494) = 0x000d8000;
1421 MCHBAR32(0x1590) = 0x00e70067;
1422 MCHBAR32(0x1594) = 0x000d8000;
1423}
1424static void ddr3_read_io_init(const mem_clock_t ddr3clock,
1425 const dimminfo_t *const dimms,
1426 const int sff)
1427{
1428 int ch;
1429
1430 FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
1431 u32 addr, tmp;
1432 const unsigned int base = 0x14b0 + (ch * 0x0100);
1433 for (addr = base + 0x1c; addr >= base; addr -= 4) {
1434 tmp = MCHBAR32(addr);
1435 tmp &= ~((3 << 25) | (1 << 8) | (7 << 16) | (0xf << 20) | (1 << 27));
1436 tmp |= (1 << 27);
1437 switch (ddr3clock) {
1438 case MEM_CLOCK_667MT:
1439 tmp |= (1 << 16) | (4 << 20);
1440 break;
1441 case MEM_CLOCK_800MT:
1442 tmp |= (2 << 16) | (3 << 20);
1443 break;
1444 case MEM_CLOCK_1067MT:
1445 if (!sff)
1446 tmp |= (2 << 16) | (1 << 20);
1447 else
1448 tmp |= (2 << 16) | (2 << 20);
1449 break;
1450 default:
1451 die("Wrong clock");
1452 }
1453 MCHBAR32(addr) = tmp;
1454 }
1455 }
1456}
1457
1458static void memory_io_init(const mem_clock_t ddr3clock,
1459 const dimminfo_t *const dimms,
1460 const stepping_t stepping,
1461 const int sff)
1462{
1463 u32 tmp;
1464
1465 if (stepping < STEPPING_B1)
1466 die("Stepping <B1 unsupported in "
1467 "system-memory i/o initialization.\n");
1468
1469 tmp = MCHBAR32(0x1400);
1470 tmp &= ~(3<<13);
1471 tmp |= (1<<9) | (1<<13);
1472 MCHBAR32(0x1400) = tmp;
1473
1474 tmp = MCHBAR32(0x140c);
1475 tmp &= ~(0xff | (1<<11) | (1<<12) |
1476 (1<<16) | (1<<18) | (1<<27) | (0xf<<28));
1477 tmp |= (1<<7) | (1<<11) | (1<<16);
1478 switch (ddr3clock) {
1479 case MEM_CLOCK_667MT:
1480 tmp |= 9 << 28;
1481 break;
1482 case MEM_CLOCK_800MT:
1483 tmp |= 7 << 28;
1484 break;
1485 case MEM_CLOCK_1067MT:
1486 tmp |= 8 << 28;
1487 break;
1488 }
1489 MCHBAR32(0x140c) = tmp;
1490
1491 MCHBAR32(0x1440) &= ~1;
1492
1493 tmp = MCHBAR32(0x1414);
1494 tmp &= ~((1<<20) | (7<<11) | (0xf << 24) | (0xf << 16));
1495 tmp |= (3<<11);
1496 switch (ddr3clock) {
1497 case MEM_CLOCK_667MT:
1498 tmp |= (2 << 24) | (10 << 16);
1499 break;
1500 case MEM_CLOCK_800MT:
1501 tmp |= (3 << 24) | (7 << 16);
1502 break;
1503 case MEM_CLOCK_1067MT:
1504 tmp |= (4 << 24) | (4 << 16);
1505 break;
1506 }
1507 MCHBAR32(0x1414) = tmp;
1508
1509 MCHBAR32(0x1418) &= ~((1<<3) | (1<<11) | (1<<19) | (1<<27));
1510
1511 MCHBAR32(0x141c) &= ~((1<<3) | (1<<11) | (1<<19) | (1<<27));
1512
1513 MCHBAR32(0x1428) |= 1<<14;
1514
1515 tmp = MCHBAR32(0x142c);
1516 tmp &= ~((0xf << 8) | (0x7 << 20) | 0xf | (0xf << 24));
1517 tmp |= (0x3 << 20) | (5 << 24);
1518 switch (ddr3clock) {
1519 case MEM_CLOCK_667MT:
1520 tmp |= (2 << 8) | 0xc;
1521 break;
1522 case MEM_CLOCK_800MT:
1523 tmp |= (3 << 8) | 0xa;
1524 break;
1525 case MEM_CLOCK_1067MT:
1526 tmp |= (4 << 8) | 0x7;
1527 break;
1528 }
1529 MCHBAR32(0x142c) = tmp;
1530
1531 tmp = MCHBAR32(0x400);
1532 tmp &= ~((3 << 4) | (3 << 16) | (3 << 30));
1533 tmp |= (2 << 4) | (2 << 16);
1534 MCHBAR32(0x400) = tmp;
1535
1536 MCHBAR32(0x404) &= ~(0xf << 20);
1537
1538 MCHBAR32(0x40c) &= ~(1 << 6);
1539
1540 tmp = MCHBAR32(0x410);
1541 tmp &= ~(7 << 28);
1542 tmp |= 2 << 28;
1543 MCHBAR32(0x410) = tmp;
1544
1545 tmp = MCHBAR32(0x41c);
1546 tmp &= ~0x77;
1547 tmp |= 0x11;
1548 MCHBAR32(0x41c) = tmp;
1549
1550 ddr3_select_clock_mux(ddr3clock, dimms, stepping);
1551
1552 ddr3_write_io_init(ddr3clock, dimms, stepping, sff);
1553
1554 ddr3_read_io_init(ddr3clock, dimms, sff);
1555}
1556
1557static void jedec_init(const timings_t *const timings,
1558 const dimminfo_t *const dimms)
1559{
1560 if ((timings->tWR < 5) || (timings->tWR > 12))
1561 die("tWR value unsupported in Jedec initialization.\n");
1562
1563 /* Pre-jedec settings */
1564 MCHBAR32(0x40) |= (1 << 1);
1565 MCHBAR32(0x230) |= (3 << 1);
1566 MCHBAR32(0x238) |= (3 << 24);
1567 MCHBAR32(0x23c) |= (3 << 24);
1568
1569 /* Normal write pointer operation */
1570 MCHBAR32(0x14f0) |= (1 << 9);
1571 MCHBAR32(0x15f0) |= (1 << 9);
1572
1573 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_CMD_MASK) | DCC_CMD_NOP;
1574
1575 u8 reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0);
1576 pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 & ~(1 << 2));
1577 reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0);
1578 pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 | (1 << 2));
1579 udelay(2);
1580
1581 /* 5 6 7 8 9 10 11 12 */
1582 static const u8 wr_lut[] = { 1, 2, 3, 4, 5, 5, 6, 6 };
1583
1584 const int WL = ((timings->tWL - 5) & 7) << 6;
1585 const int ODT_120OHMS = (1 << 9);
1586 const int ODS_34OHMS = (1 << 4);
1587 const int WR = (wr_lut[timings->tWR - 5] & 7) << 12;
1588 const int DLL1 = 1 << 11;
1589 const int CAS = ((timings->CAS - 4) & 7) << 7;
1590 const int INTERLEAVED = 1 << 6;/* This is READ Burst Type == interleaved. */
1591
1592 int ch, r;
1593 FOR_EACH_POPULATED_RANK(dimms, ch, r) {
1594 /* We won't do this in dual-interleaved mode,
Felix Held7f9f3d02019-06-07 14:47:28 +02001595 so don't care about the offset.
1596 Mirrored ranks aren't taken into account here. */
Patrick Georgi2efc8802012-11-06 11:03:53 +01001597 const u32 rankaddr = raminit_get_rank_addr(ch, r);
Nico Huber0624f922017-04-15 15:57:28 +02001598 printk(BIOS_DEBUG, "JEDEC init @0x%08x\n", rankaddr);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001599 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_SET_EREG_MASK) | DCC_SET_EREGx(2);
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001600 read32((u32 *)(rankaddr | WL));
Patrick Georgi2efc8802012-11-06 11:03:53 +01001601 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_SET_EREG_MASK) | DCC_SET_EREGx(3);
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001602 read32((u32 *)rankaddr);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001603 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_SET_EREG_MASK) | DCC_SET_EREGx(1);
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001604 read32((u32 *)(rankaddr | ODT_120OHMS | ODS_34OHMS));
Patrick Georgi2efc8802012-11-06 11:03:53 +01001605 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_CMD_MASK) | DCC_SET_MREG;
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001606 read32((u32 *)(rankaddr | WR | DLL1 | CAS | INTERLEAVED));
Patrick Georgi2efc8802012-11-06 11:03:53 +01001607 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_CMD_MASK) | DCC_SET_MREG;
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001608 read32((u32 *)(rankaddr | WR | CAS | INTERLEAVED));
Patrick Georgi2efc8802012-11-06 11:03:53 +01001609 }
1610}
1611
1612static void ddr3_calibrate_zq(void) {
1613 udelay(2);
1614
1615 u32 tmp = MCHBAR32(DCC_MCHBAR);
1616 tmp &= ~(7 << 16);
1617 tmp |= (5 << 16); /* ZQ calibration mode */
1618 MCHBAR32(DCC_MCHBAR) = tmp;
1619
1620 MCHBAR32(CxDRT6_MCHBAR(0)) |= (1 << 3);
1621 MCHBAR32(CxDRT6_MCHBAR(1)) |= (1 << 3);
1622
1623 udelay(1);
1624
1625 MCHBAR32(CxDRT6_MCHBAR(0)) &= ~(1 << 3);
1626 MCHBAR32(CxDRT6_MCHBAR(1)) &= ~(1 << 3);
1627
1628 MCHBAR32(DCC_MCHBAR) |= (7 << 16); /* Normal operation */
1629}
1630
1631static void post_jedec_sequence(const int cores) {
1632 const int quadcore = cores == 4;
1633
1634 MCHBAR32(0x0040) &= ~(1 << 1);
1635 MCHBAR32(0x0230) &= ~(3 << 1);
1636 MCHBAR32(0x0230) |= 1 << 15;
1637 MCHBAR32(0x0230) &= ~(1 << 19);
1638 MCHBAR32(0x1250) = 0x6c4;
1639 MCHBAR32(0x1350) = 0x6c4;
1640 MCHBAR32(0x1254) = 0x871a066d;
1641 MCHBAR32(0x1354) = 0x871a066d;
1642 MCHBAR32(0x0238) |= 1 << 26;
1643 MCHBAR32(0x0238) &= ~(3 << 24);
1644 MCHBAR32(0x0238) |= 1 << 23;
1645 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 20)) | (3 << 20);
1646 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 17)) | (6 << 17);
1647 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 14)) | (6 << 14);
1648 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 11)) | (6 << 11);
1649 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 8)) | (6 << 8);
1650 MCHBAR32(0x023c) &= ~(3 << 24);
1651 MCHBAR32(0x023c) &= ~(1 << 23);
1652 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 20)) | (3 << 20);
1653 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 17)) | (6 << 17);
1654 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 14)) | (6 << 14);
1655 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 11)) | (6 << 11);
1656 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 8)) | (6 << 8);
1657
1658 if (quadcore) {
1659 MCHBAR32(0xb14) |= (0xbfbf << 16);
1660 }
1661}
1662
1663static void dram_optimizations(const timings_t *const timings,
1664 const dimminfo_t *const dimms)
1665{
1666 int ch;
1667
1668 FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
1669 const unsigned int mchbar = CxDRC1_MCHBAR(ch);
1670 u32 cxdrc1 = MCHBAR32(mchbar);
1671 cxdrc1 &= ~CxDRC1_SSDS_MASK;
1672 if (dimms[ch].ranks == 1)
1673 cxdrc1 |= CxDRC1_SS;
1674 else
1675 cxdrc1 |= CxDRC1_DS;
1676 MCHBAR32(mchbar) = cxdrc1;
1677 }
1678}
1679
1680u32 raminit_get_rank_addr(unsigned int channel, unsigned int rank)
1681{
1682 if (!channel && !rank)
1683 return 0; /* Address of first rank */
1684
1685 /* Read the bound of the previous rank. */
1686 if (rank > 0) {
1687 rank--;
1688 } else {
1689 rank = 3; /* Highest rank per channel */
1690 channel--;
1691 }
1692 const u32 reg = MCHBAR32(CxDRBy_MCHBAR(channel, rank));
1693 /* Bound is in 32MB. */
1694 return ((reg & CxDRBy_BOUND_MASK(rank)) >> CxDRBy_BOUND_SHIFT(rank)) << 25;
1695}
1696
1697void raminit_reset_readwrite_pointers(void) {
1698 MCHBAR32(0x1234) |= (1 << 6);
1699 MCHBAR32(0x1234) &= ~(1 << 6);
1700 MCHBAR32(0x1334) |= (1 << 6);
1701 MCHBAR32(0x1334) &= ~(1 << 6);
1702 MCHBAR32(0x14f0) &= ~(1 << 9);
1703 MCHBAR32(0x14f0) |= (1 << 9);
1704 MCHBAR32(0x14f0) |= (1 << 10);
1705 MCHBAR32(0x15f0) &= ~(1 << 9);
1706 MCHBAR32(0x15f0) |= (1 << 9);
1707 MCHBAR32(0x15f0) |= (1 << 10);
1708}
1709
1710void raminit(sysinfo_t *const sysinfo, const int s3resume)
1711{
1712 const dimminfo_t *const dimms = sysinfo->dimms;
1713 const timings_t *const timings = &sysinfo->selected_timings;
Patrick Georgi2efc8802012-11-06 11:03:53 +01001714
1715 int ch;
1716 u8 reg8;
1717
Arthur Heymans049347f2017-05-12 11:54:08 +02001718 timestamp_add_now(TS_BEFORE_INITRAM);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001719
1720 /* Wait for some bit, maybe TXT clear. */
1721 if (sysinfo->txt_enabled) {
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001722 while (!(read8((u8 *)0xfed40000) & (1 << 7))) {}
Patrick Georgi2efc8802012-11-06 11:03:53 +01001723 }
1724
Patrick Georgi2efc8802012-11-06 11:03:53 +01001725 /* Collect information about DIMMs and find common settings. */
1726 collect_dimm_config(sysinfo);
1727
1728 /* Check for bad warm boot. */
1729 reset_on_bad_warmboot();
1730
1731
1732 /***** From now on, program according to collected infos: *****/
1733
1734 /* Program DRAM type. */
1735 switch (sysinfo->spd_type) {
1736 case DDR2:
1737 MCHBAR8(0x1434) |= (1 << 7);
1738 break;
1739 case DDR3:
1740 MCHBAR8(0x1434) |= (3 << 0);
1741 break;
1742 }
1743
1744 /* Program system memory frequency. */
1745 set_system_memory_frequency(timings);
1746 /* Program IGD memory frequency. */
1747 set_igd_memory_frequencies(sysinfo);
1748
1749 /* Configure DRAM control mode for populated channels. */
1750 configure_dram_control_mode(timings, dimms);
1751
1752 /* Initialize RCOMP. */
Nico Huber5aaeb272015-12-30 00:17:27 +01001753 rcomp_initialization(sysinfo->stepping, sysinfo->sff);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001754
1755 /* Power-up DRAM. */
1756 dram_powerup(s3resume);
1757 /* Program DRAM timings. */
1758 dram_program_timings(timings);
1759 /* Program number of banks. */
1760 dram_program_banks(dimms);
1761 /* Enable DRAM clock pairs for populated DIMMs. */
1762 FOR_EACH_POPULATED_CHANNEL(dimms, ch)
1763 MCHBAR32(CxDCLKDIS_MCHBAR(ch)) |= CxDCLKDIS_ENABLE;
1764
1765 /* Enable On-Die Termination. */
Nico Huber5aaeb272015-12-30 00:17:27 +01001766 odt_setup(timings, sysinfo->sff);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001767 /* Miscellaneous settings. */
1768 misc_settings(timings, sysinfo->stepping);
1769 /* Program clock crossing registers. */
1770 clock_crossing_setup(timings->fsb_clock, timings->mem_clock, dimms);
1771 /* Program egress VC1 timings. */
1772 vc1_program_timings(timings->fsb_clock);
1773 /* Perform system-memory i/o initialization. */
Nico Huber5aaeb272015-12-30 00:17:27 +01001774 memory_io_init(timings->mem_clock, dimms,
1775 sysinfo->stepping, sysinfo->sff);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001776
1777 /* Initialize memory map with dummy values of 128MB per rank with a
1778 page size of 4KB. This makes the JEDEC initialization code easier. */
1779 prejedec_memory_map(dimms, timings->channel_mode);
1780 if (!s3resume)
1781 /* Perform JEDEC initialization of DIMMS. */
1782 jedec_init(timings, dimms);
1783 /* Some programming steps after JEDEC initialization. */
1784 post_jedec_sequence(sysinfo->cores);
1785
1786 /* Announce normal operation, initialization completed. */
1787 MCHBAR32(DCC_MCHBAR) |= (0x7 << 16) | (0x1 << 19);
1788 reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0);
1789 pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 | (1 << 2));
1790 reg8 = pci_read_config8(PCI_DEV(0, 0, 0), 0xf0);
1791 pci_write_config8(PCI_DEV(0, 0, 0), 0xf0, reg8 & ~(1 << 2));
1792
1793
1794 /* Take a breath (the reader). */
1795
1796
1797 /* Perform ZQ calibration for DDR3. */
Nico Huber4a86b3b2019-08-11 16:28:05 +02001798 if (sysinfo->spd_type == DDR3)
1799 ddr3_calibrate_zq();
Patrick Georgi2efc8802012-11-06 11:03:53 +01001800
1801 /* Perform receive-enable calibration. */
1802 raminit_receive_enable_calibration(timings, dimms);
1803 /* Lend clock values from receive-enable calibration. */
Jonathan Neuschäfer2f828eb2018-02-12 12:00:44 +01001804 MCHBAR32(CxDRT5_MCHBAR(0)) =
1805 (MCHBAR32(CxDRT5_MCHBAR(0)) & ~(0xf0)) |
1806 ((((MCHBAR32(CxDRT3_MCHBAR(0)) >> 7) - 1) & 0xf) << 4);
1807 MCHBAR32(CxDRT5_MCHBAR(1)) =
1808 (MCHBAR32(CxDRT5_MCHBAR(1)) & ~(0xf0)) |
1809 ((((MCHBAR32(CxDRT3_MCHBAR(1)) >> 7) - 1) & 0xf) << 4);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001810
1811 /* Perform read/write training for high clock rate. */
1812 if (timings->mem_clock == MEM_CLOCK_1067MT) {
1813 raminit_read_training(dimms, s3resume);
1814 raminit_write_training(timings->mem_clock, dimms, s3resume);
1815 }
1816
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001817 igd_compute_ggc(sysinfo);
1818
Patrick Georgi2efc8802012-11-06 11:03:53 +01001819 /* Program final memory map (with real values). */
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001820 program_memory_map(dimms, timings->channel_mode, 0, sysinfo->ggc);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001821
1822 /* Some last optimizations. */
1823 dram_optimizations(timings, dimms);
1824
Elyes HAOUAS3d450002018-08-09 18:55:58 +02001825 /* Mark raminit being finished. :-) */
Patrick Georgi2efc8802012-11-06 11:03:53 +01001826 u8 tmp8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2) & ~(1 << 7);
1827 pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, tmp8);
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001828
1829 raminit_thermal(sysinfo);
1830 init_igd(sysinfo);
Arthur Heymans049347f2017-05-12 11:54:08 +02001831
1832 timestamp_add_now(TS_AFTER_INITRAM);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001833}