blob: f624a7d02afc744910b0603f0c9ca422e8a078ab [file] [log] [blame]
ebiedermc7798892009-04-01 11:03:32 +00001/*
2 * This file is part of the coreboot project.
3 *
4 * Copyright (C) 2003 Eric W. Biederman <ebiederm@xmission.com>
5 * Copyright (C) 2009 Ron Minnich <rminnich@gmail.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; version 2 of the License.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
19 */
20
Ronald G. Minnichae631262009-04-01 10:48:39 +000021#include <console/console.h>
22#include <part/fallback_boot.h>
23#include <boot/elf.h>
24#include <boot/elf_boot.h>
25#include <boot/coreboot_tables.h>
26#include <ip_checksum.h>
27#include <stream/read_bytes.h>
28#include <stdint.h>
29#include <stdlib.h>
30#include <string.h>
31#include <romfs.h>
32
33#ifndef CONFIG_BIG_ENDIAN
34#define ntohl(x) ( ((x&0xff)<<24) | ((x&0xff00)<<8) | \
35 ((x&0xff0000) >> 8) | ((x&0xff000000) >> 24) )
36#else
37#define ntohl(x) (x)
38#endif
39
40/* Maximum physical address we can use for the coreboot bounce buffer.
41 */
42#ifndef MAX_ADDR
43#define MAX_ADDR -1UL
44#endif
45
46extern unsigned char _ram_seg;
47extern unsigned char _eram_seg;
48
49struct segment {
50 struct segment *next;
51 struct segment *prev;
52 struct segment *phdr_next;
53 struct segment *phdr_prev;
54 unsigned long s_dstaddr;
55 unsigned long s_srcaddr;
56 unsigned long s_memsz;
57 unsigned long s_filesz;
58};
59
60struct verify_callback {
61 struct verify_callback *next;
62 int (*callback)(struct verify_callback *vcb,
63 Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head);
64 unsigned long desc_offset;
65 unsigned long desc_addr;
66};
67
68struct ip_checksum_vcb {
69 struct verify_callback data;
70 unsigned short ip_checksum;
71};
72
73int romfs_self_decompress(int algo, void *src,struct segment *new)
74{
75 u8 *dst;
76
77 /* for uncompressed, it's easy: just point at the area in ROM */
78 if (algo == ROMFS_COMPRESS_NONE) {
79 new->s_srcaddr = (u32) src;
80 new->s_filesz = new->s_memsz;
81 return 0;
82 }
83
84 /* for compression, let's keep it simple. We'll malloc the destination
85 * area and decompress to there. The compression overhead far outweighs
86 * any overhead for an extra copy.
87 */
88 dst = malloc(new->s_memsz);
89 if (! dst)
90 return -1;
91
92 switch(algo) {
93#ifdef CONFIG_COMPRESSION_LZMA
94 case ROMFS_COMPRESS_LZMA: {
95 unsigned long ulzma(unsigned char *src, unsigned char *dst);
96 ulzma(src, dst);
97 }
98#endif
99
100#ifdef CONFIG_COMPRESSION_NRV2B
101 case ROMFS_COMPRESS_NRV2B: {
102 unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
103 unsigned long tmp;
104 unrv2b(src, dst, &tmp);
105 }
106#endif
107 default:
108 printk_info( "ROMFS: Unknown compression type %d\n",
109 algo);
110 return -1;
111 }
112
113 new->s_srcaddr = (u32) dst;
114 new->s_filesz = new->s_memsz;
115 return 0;
116
117}
118
119/* The problem:
120 * Static executables all want to share the same addresses
121 * in memory because only a few addresses are reliably present on
122 * a machine, and implementing general relocation is hard.
123 *
124 * The solution:
125 * - Allocate a buffer twice the size of the coreboot image.
126 * - Anything that would overwrite coreboot copy into the lower half of
127 * the buffer.
128 * - After loading an ELF image copy coreboot to the upper half of the
129 * buffer.
130 * - Then jump to the loaded image.
131 *
132 * Benefits:
133 * - Nearly arbitrary standalone executables can be loaded.
134 * - Coreboot is preserved, so it can be returned to.
135 * - The implementation is still relatively simple,
136 * and much simpler then the general case implemented in kexec.
137 *
138 */
139
140static unsigned long get_bounce_buffer(struct lb_memory *mem)
141{
142 unsigned long lb_size;
143 unsigned long mem_entries;
144 unsigned long buffer;
145 int i;
146 lb_size = (unsigned long)(&_eram_seg - &_ram_seg);
147 /* Double coreboot size so I have somewhere to place a copy to return to */
148 lb_size = lb_size + lb_size;
149 mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
150 buffer = 0;
151 for(i = 0; i < mem_entries; i++) {
152 unsigned long mstart, mend;
153 unsigned long msize;
154 unsigned long tbuffer;
155 if (mem->map[i].type != LB_MEM_RAM)
156 continue;
157 if (unpack_lb64(mem->map[i].start) > MAX_ADDR)
158 continue;
159 if (unpack_lb64(mem->map[i].size) < lb_size)
160 continue;
161 mstart = unpack_lb64(mem->map[i].start);
162 msize = MAX_ADDR - mstart +1;
163 if (msize > unpack_lb64(mem->map[i].size))
164 msize = unpack_lb64(mem->map[i].size);
165 mend = mstart + msize;
166 tbuffer = mend - lb_size;
167 if (tbuffer < buffer)
168 continue;
169 buffer = tbuffer;
170 }
171 return buffer;
172}
173
174static int valid_area(struct lb_memory *mem, unsigned long buffer,
175 unsigned long start, unsigned long len)
176{
177 /* Check through all of the memory segments and ensure
178 * the segment that was passed in is completely contained
179 * in RAM.
180 */
181 int i;
182 unsigned long end = start + len;
183 unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
184
185 /* See if I conflict with the bounce buffer */
186 if (end >= buffer) {
187 return 0;
188 }
189
190 /* Walk through the table of valid memory ranges and see if I
191 * have a match.
192 */
193 for(i = 0; i < mem_entries; i++) {
194 uint64_t mstart, mend;
195 uint32_t mtype;
196 mtype = mem->map[i].type;
197 mstart = unpack_lb64(mem->map[i].start);
198 mend = mstart + unpack_lb64(mem->map[i].size);
199 if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) {
200 break;
201 }
202 if ((mtype == LB_MEM_TABLE) && (start < mend) && (end > mstart)) {
203 printk_err("Payload is overwriting Coreboot tables.\n");
204 break;
205 }
206 }
207 if (i == mem_entries) {
208 printk_err("No matching ram area found for range:\n");
209 printk_err(" [0x%016lx, 0x%016lx)\n", start, end);
210 printk_err("Ram areas\n");
211 for(i = 0; i < mem_entries; i++) {
212 uint64_t mstart, mend;
213 uint32_t mtype;
214 mtype = mem->map[i].type;
215 mstart = unpack_lb64(mem->map[i].start);
216 mend = mstart + unpack_lb64(mem->map[i].size);
217 printk_err(" [0x%016lx, 0x%016lx) %s\n",
218 (unsigned long)mstart,
219 (unsigned long)mend,
220 (mtype == LB_MEM_RAM)?"RAM":"Reserved");
221
222 }
223 return 0;
224 }
225 return 1;
226}
227
228static void relocate_segment(unsigned long buffer, struct segment *seg)
229{
230 /* Modify all segments that want to load onto coreboot
231 * to load onto the bounce buffer instead.
232 */
233 unsigned long lb_start = (unsigned long)&_ram_seg;
234 unsigned long lb_end = (unsigned long)&_eram_seg;
235 unsigned long start, middle, end;
236
237 printk_spew("lb: [0x%016lx, 0x%016lx)\n",
238 lb_start, lb_end);
239
240 start = seg->s_dstaddr;
241 middle = start + seg->s_filesz;
242 end = start + seg->s_memsz;
243 /* I don't conflict with coreboot so get out of here */
244 if ((end <= lb_start) || (start >= lb_end))
245 return;
246
247 printk_spew("segment: [0x%016lx, 0x%016lx, 0x%016lx)\n",
248 start, middle, end);
249
250 /* Slice off a piece at the beginning
251 * that doesn't conflict with coreboot.
252 */
253 if (start < lb_start) {
254 struct segment *new;
255 unsigned long len = lb_start - start;
256 new = malloc(sizeof(*new));
257 *new = *seg;
258 new->s_memsz = len;
259 seg->s_memsz -= len;
260 seg->s_dstaddr += len;
261 seg->s_srcaddr += len;
262 if (seg->s_filesz > len) {
263 new->s_filesz = len;
264 seg->s_filesz -= len;
265 } else {
266 seg->s_filesz = 0;
267 }
268
269 /* Order by stream offset */
270 new->next = seg;
271 new->prev = seg->prev;
272 seg->prev->next = new;
273 seg->prev = new;
274 /* Order by original program header order */
275 new->phdr_next = seg;
276 new->phdr_prev = seg->phdr_prev;
277 seg->phdr_prev->phdr_next = new;
278 seg->phdr_prev = new;
279
280 /* compute the new value of start */
281 start = seg->s_dstaddr;
282
283 printk_spew(" early: [0x%016lx, 0x%016lx, 0x%016lx)\n",
284 new->s_dstaddr,
285 new->s_dstaddr + new->s_filesz,
286 new->s_dstaddr + new->s_memsz);
287 }
288
289 /* Slice off a piece at the end
290 * that doesn't conflict with coreboot
291 */
292 if (end > lb_end) {
293 unsigned long len = lb_end - start;
294 struct segment *new;
295 new = malloc(sizeof(*new));
296 *new = *seg;
297 seg->s_memsz = len;
298 new->s_memsz -= len;
299 new->s_dstaddr += len;
300 new->s_srcaddr += len;
301 if (seg->s_filesz > len) {
302 seg->s_filesz = len;
303 new->s_filesz -= len;
304 } else {
305 new->s_filesz = 0;
306 }
307 /* Order by stream offset */
308 new->next = seg->next;
309 new->prev = seg;
310 seg->next->prev = new;
311 seg->next = new;
312 /* Order by original program header order */
313 new->phdr_next = seg->phdr_next;
314 new->phdr_prev = seg;
315 seg->phdr_next->phdr_prev = new;
316 seg->phdr_next = new;
317
318 /* compute the new value of end */
319 end = start + len;
320
321 printk_spew(" late: [0x%016lx, 0x%016lx, 0x%016lx)\n",
322 new->s_dstaddr,
323 new->s_dstaddr + new->s_filesz,
324 new->s_dstaddr + new->s_memsz);
325
326 }
327 /* Now retarget this segment onto the bounce buffer */
328 /* sort of explanation: the buffer is a 1:1 mapping to coreboot.
329 * so you will make the dstaddr be this buffer, and it will get copied
330 * later to where coreboot lives.
331 */
332 seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start);
333
334 printk_spew(" bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n",
335 seg->s_dstaddr,
336 seg->s_dstaddr + seg->s_filesz,
337 seg->s_dstaddr + seg->s_memsz);
338}
339
340
341static int build_self_segment_list(
342 struct segment *head,
343 unsigned long bounce_buffer, struct lb_memory *mem,
344 struct romfs_payload *payload, u32 *entry)
345{
346 struct segment *new;
347 struct segment *ptr;
348 u8 *data;
349 int datasize;
350 struct romfs_payload_segment *segment, *first_segment;
351 memset(head, 0, sizeof(*head));
352 head->phdr_next = head->phdr_prev = head;
353 head->next = head->prev = head;
354 first_segment = segment = &payload->segments;
355
356 while(1) {
357 printk_debug("Segment %p\n", segment);
358 switch(segment->type) {
359 default: printk_emerg("Bad segment type %x\n", segment->type);
360 return -1;
361 case PAYLOAD_SEGMENT_PARAMS:
362 printk_info("found param section\n");
363 segment++;
364 continue;
365 case PAYLOAD_SEGMENT_CODE:
366 case PAYLOAD_SEGMENT_DATA:
367 printk_info( "%s: ", segment->type == PAYLOAD_SEGMENT_CODE ?
368 "code" : "data");
369 new = malloc(sizeof(*new));
370 new->s_dstaddr = ntohl((u32) segment->load_addr);
371 new->s_memsz = ntohl(segment->mem_len);
372
373 datasize = ntohl(segment->len);
374 /* figure out decompression, do it, get pointer to the area */
375 if (romfs_self_decompress(ntohl(segment->compression),
376 ((unsigned char *) first_segment) +
377 ntohl(segment->offset), new)) {
378 printk_emerg("romfs_self_decompress failed\n");
379 return;
380 }
381 printk_debug("New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n",
382 new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
383 /* Clean up the values */
384 if (new->s_filesz > new->s_memsz) {
385 new->s_filesz = new->s_memsz;
386 }
387 printk_debug("(cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n",
388 new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
389 break;
390 case PAYLOAD_SEGMENT_BSS:
391 printk_info("BSS %p/%d\n", (void *) ntohl((u32) segment->load_addr),
392 ntohl(segment->mem_len));
393 new = malloc(sizeof(*new));
394 new->s_filesz = 0;
395 new->s_dstaddr = ntohl((u32) segment->load_addr);
396 new->s_memsz = ntohl(segment->mem_len);
397
398 break;
399
400 case PAYLOAD_SEGMENT_ENTRY:
401 printk_info("Entry %p\n", (void *) ntohl((u32) segment->load_addr));
402 *entry = (void *) ntohl((u32) segment->load_addr);
403 return 1;
404 }
405 segment++;
406 for(ptr = head->next; ptr != head; ptr = ptr->next) {
407 if (new->s_srcaddr < ntohl((u32) segment->load_addr))
408 break;
409 }
410 /* Order by stream offset */
411 new->next = ptr;
412 new->prev = ptr->prev;
413 ptr->prev->next = new;
414 ptr->prev = new;
415 /* Order by original program header order */
416 new->phdr_next = head;
417 new->phdr_prev = head->phdr_prev;
418 head->phdr_prev->phdr_next = new;
419 head->phdr_prev = new;
420
421 /* Verify the memory addresses in the segment are valid */
422 if (!valid_area(mem, bounce_buffer, new->s_dstaddr, new->s_memsz))
423 goto out;
424
425 /* Modify the segment to load onto the bounce_buffer if necessary.
426 */
427 relocate_segment(bounce_buffer, new);
428 }
429 return 1;
430 out:
431 return 0;
432}
433
434static int load_self_segments(
435 struct segment *head, struct romfs_payload *payload)
436{
437 unsigned long offset;
438 struct segment *ptr;
439
440 offset = 0;
441 for(ptr = head->next; ptr != head; ptr = ptr->next) {
442 unsigned long skip_bytes, read_bytes;
443 unsigned char *dest, *middle, *end, *src;
444 byte_offset_t result;
445 printk_debug("Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
446 ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
447
448 /* Compute the boundaries of the segment */
449 dest = (unsigned char *)(ptr->s_dstaddr);
450 end = dest + ptr->s_memsz;
451 middle = dest + ptr->s_filesz;
452 src = ptr->s_srcaddr;
453 printk_spew("[ 0x%016lx, %016lx, 0x%016lx) <- %016lx\n",
454 (unsigned long)dest,
455 (unsigned long)middle,
456 (unsigned long)end,
457 (unsigned long)src);
458
459 /* Copy data from the initial buffer */
460 if (ptr->s_filesz) {
461 size_t len;
462 len = ptr->s_filesz;
463 memcpy(dest, src, len);
464 dest += len;
465 }
466
467 /* Zero the extra bytes between middle & end */
468 if (middle < end) {
469 printk_debug("Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n",
470 (unsigned long)middle, (unsigned long)(end - middle));
471
472 /* Zero the extra bytes */
473 memset(middle, 0, end - middle);
474 }
475 }
476 return 1;
477 out:
478 return 0;
479}
480
481int selfboot(struct lb_memory *mem, struct romfs_payload *payload)
482{
483 void *entry;
484 struct segment head;
485 unsigned long bounce_buffer;
486
487 /* Find a bounce buffer so I can load to coreboot's current location */
488 bounce_buffer = get_bounce_buffer(mem);
489 if (!bounce_buffer) {
490 printk_err("Could not find a bounce buffer...\n");
491 goto out;
492 }
493
494 /* Preprocess the self segments */
495 if (!build_self_segment_list(&head, bounce_buffer, mem, payload, &entry))
496 goto out;
497
498 /* Load the segments */
499 if (!load_self_segments(&head, payload))
500 goto out;
501
502 printk_spew("Loaded segments\n");
503
504 /* Reset to booting from this image as late as possible */
505 boot_successful();
506
507 printk_debug("Jumping to boot code at %p\n", entry);
508 post_code(0xfe);
509
510 /* Jump to kernel */
511 jmp_to_elf_entry(entry, bounce_buffer);
512 return 1;
513
514 out:
515 return 0;
516}
517