blob: f9d7c8fbed7a6c75cff17cefa94a35830169f6ae [file] [log] [blame]
Angel Pons4b429832020-04-02 23:48:50 +02001/* SPDX-License-Identifier: GPL-2.0-only */
Patrick Georgi2efc8802012-11-06 11:03:53 +01002
Elyes HAOUASba9b5042019-12-19 07:47:52 +01003#include <commonlib/helpers.h>
Patrick Georgi2efc8802012-11-06 11:03:53 +01004#include <stdint.h>
5#include <arch/cpu.h>
Kyösti Mälkki13f66502019-03-03 08:01:05 +02006#include <device/mmio.h>
Kyösti Mälkkif1b58b72019-03-01 13:43:02 +02007#include <device/pci_ops.h>
Patrick Georgi2efc8802012-11-06 11:03:53 +01008#include <device/pci_def.h>
Patrick Rudolph266a1f72016-06-09 18:13:34 +02009#include <device/device.h>
Kyösti Mälkki1a1b04e2020-01-07 22:34:33 +020010#include <device/smbus_host.h>
Patrick Georgi2efc8802012-11-06 11:03:53 +010011#include <spd.h>
12#include <console/console.h>
13#include <lib.h>
Arthur Heymans10141c32016-10-27 00:31:41 +020014#include <delay.h>
Arthur Heymans049347f2017-05-12 11:54:08 +020015#include <timestamp.h>
Patrick Georgi2efc8802012-11-06 11:03:53 +010016#include "gm45.h"
Patrick Rudolph266a1f72016-06-09 18:13:34 +020017#include "chip.h"
Patrick Georgi2efc8802012-11-06 11:03:53 +010018
19static const gmch_gfx_t gmch_gfx_types[][5] = {
20/* MAX_667MHz MAX_533MHz MAX_400MHz MAX_333MHz MAX_800MHz */
21 { GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
22 { GMCH_GM47, GMCH_GM45, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_GM49 },
23 { GMCH_GE45, GMCH_GE45, GMCH_GE45, GMCH_GE45, GMCH_GE45 },
24 { GMCH_UNKNOWN, GMCH_GL43, GMCH_GL40, GMCH_UNKNOWN, GMCH_UNKNOWN },
25 { GMCH_UNKNOWN, GMCH_GS45, GMCH_GS40, GMCH_UNKNOWN, GMCH_UNKNOWN },
26 { GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
27 { GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN, GMCH_UNKNOWN },
28 { GMCH_PM45, GMCH_PM45, GMCH_PM45, GMCH_PM45, GMCH_PM45 },
29};
30
31void get_gmch_info(sysinfo_t *sysinfo)
32{
33 sysinfo->stepping = pci_read_config8(PCI_DEV(0, 0, 0), PCI_CLASS_REVISION);
34 if ((sysinfo->stepping > STEPPING_B3) &&
35 (sysinfo->stepping != STEPPING_CONVERSION_A1))
36 die("Unknown stepping.\n");
37 if (sysinfo->stepping <= STEPPING_B3)
38 printk(BIOS_DEBUG, "Stepping %c%d\n", 'A' + sysinfo->stepping / 4, sysinfo->stepping % 4);
39 else
40 printk(BIOS_DEBUG, "Conversion stepping A1\n");
41
42 const u32 eax = cpuid_ext(0x04, 0).eax;
43 sysinfo->cores = ((eax >> 26) & 0x3f) + 1;
44 printk(BIOS_SPEW, "%d CPU cores\n", sysinfo->cores);
45
46 u32 capid = pci_read_config16(PCI_DEV(0, 0, 0), D0F0_CAPID0+8);
47 if (!(capid & (1<<(79-64)))) {
48 printk(BIOS_SPEW, "iTPM enabled\n");
49 }
50
51 capid = pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0+4);
52 if (!(capid & (1<<(57-32)))) {
53 printk(BIOS_SPEW, "ME enabled\n");
54 }
55
56 if (!(capid & (1<<(56-32)))) {
57 printk(BIOS_SPEW, "AMT enabled\n");
58 }
59
60 sysinfo->max_ddr2_mhz = (capid & (1<<(53-32)))?667:800;
61 printk(BIOS_SPEW, "capable of DDR2 of %d MHz or lower\n", sysinfo->max_ddr2_mhz);
62
63 if (!(capid & (1<<(48-32)))) {
64 printk(BIOS_SPEW, "VT-d enabled\n");
65 }
66
67 const u32 gfx_variant = (capid>>(42-32)) & 0x7;
68 const u32 render_freq = ((capid>>(50-32) & 0x1) << 2) | ((capid>>(35-32)) & 0x3);
69 if (render_freq <= 4)
70 sysinfo->gfx_type = gmch_gfx_types[gfx_variant][render_freq];
71 else
72 sysinfo->gfx_type = GMCH_UNKNOWN;
Patrick Georgi2efc8802012-11-06 11:03:53 +010073 switch (sysinfo->gfx_type) {
74 case GMCH_GM45:
75 printk(BIOS_SPEW, "GMCH: GM45\n");
76 break;
77 case GMCH_GM47:
78 printk(BIOS_SPEW, "GMCH: GM47\n");
79 break;
80 case GMCH_GM49:
81 printk(BIOS_SPEW, "GMCH: GM49\n");
82 break;
83 case GMCH_GE45:
84 printk(BIOS_SPEW, "GMCH: GE45\n");
85 break;
86 case GMCH_GL40:
87 printk(BIOS_SPEW, "GMCH: GL40\n");
88 break;
89 case GMCH_GL43:
90 printk(BIOS_SPEW, "GMCH: GL43\n");
91 break;
92 case GMCH_GS40:
93 printk(BIOS_SPEW, "GMCH: GS40\n");
94 break;
95 case GMCH_GS45:
Nico Huber5aaeb272015-12-30 00:17:27 +010096 printk(BIOS_SPEW, "GMCH: GS45, using %s-power mode\n",
97 sysinfo->gs45_low_power_mode ? "low" : "high");
Patrick Georgi2efc8802012-11-06 11:03:53 +010098 break;
99 case GMCH_PM45:
100 printk(BIOS_SPEW, "GMCH: PM45\n");
101 break;
102 case GMCH_UNKNOWN:
103 printk(BIOS_SPEW, "unknown GMCH\n");
104 break;
105 }
106
107 sysinfo->txt_enabled = !(capid & (1 << (37-32)));
108 if (sysinfo->txt_enabled) {
109 printk(BIOS_SPEW, "TXT enabled\n");
110 }
111
112 switch (render_freq) {
113 case 4:
114 sysinfo->max_render_mhz = 800;
115 break;
116 case 0:
117 sysinfo->max_render_mhz = 667;
118 break;
119 case 1:
120 sysinfo->max_render_mhz = 533;
121 break;
122 case 2:
123 sysinfo->max_render_mhz = 400;
124 break;
125 case 3:
126 sysinfo->max_render_mhz = 333;
127 break;
128 default:
129 printk(BIOS_SPEW, "Unknown render frequency\n");
130 sysinfo->max_render_mhz = 0;
131 break;
132 }
133 if (sysinfo->max_render_mhz != 0) {
134 printk(BIOS_SPEW, "Render frequency: %d MHz\n", sysinfo->max_render_mhz);
135 }
136
137 if (!(capid & (1<<(33-32)))) {
138 printk(BIOS_SPEW, "IGD enabled\n");
139 }
140
141 if (!(capid & (1<<(32-32)))) {
142 printk(BIOS_SPEW, "PCIe-to-GMCH enabled\n");
143 }
144
145 capid = pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0);
146
147 u32 ddr_cap = capid>>30 & 0x3;
148 switch (ddr_cap) {
149 case 0:
150 sysinfo->max_ddr3_mt = 1067;
151 break;
152 case 1:
153 sysinfo->max_ddr3_mt = 800;
154 break;
155 case 2:
156 case 3:
157 printk(BIOS_SPEW, "GMCH not DDR3 capable\n");
158 sysinfo->max_ddr3_mt = 0;
159 break;
160 }
161 if (sysinfo->max_ddr3_mt != 0) {
162 printk(BIOS_SPEW, "GMCH supports DDR3 with %d MT or less\n", sysinfo->max_ddr3_mt);
163 }
164
Martin Roth468d02c2019-10-23 21:44:42 -0600165 const unsigned int max_fsb = (capid >> 28) & 0x3;
Patrick Georgi2efc8802012-11-06 11:03:53 +0100166 switch (max_fsb) {
167 case 1:
168 sysinfo->max_fsb_mhz = 1067;
169 break;
170 case 2:
171 sysinfo->max_fsb_mhz = 800;
172 break;
173 case 3:
174 sysinfo->max_fsb_mhz = 667;
175 break;
176 default:
177 die("unknown FSB capability\n");
178 break;
179 }
180 if (sysinfo->max_fsb_mhz != 0) {
181 printk(BIOS_SPEW, "GMCH supports FSB with up to %d MHz\n", sysinfo->max_fsb_mhz);
182 }
183 sysinfo->max_fsb = max_fsb - 1;
184}
185
186/*
187 * Detect if the system went through an interrupted RAM init or is incon-
188 * sistent. If so, initiate a cold reboot. Otherwise mark the system to be
Martin Roth128c1042016-11-18 09:29:03 -0700189 * in RAM init, so this function would detect it on an erroneous reboot.
Patrick Georgi2efc8802012-11-06 11:03:53 +0100190 */
191void enter_raminit_or_reset(void)
192{
193 /* Interrupted RAM init or inconsistent system? */
194 u8 reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa2);
195
196 if (reg8 & (1 << 2)) { /* S4-assertion-width violation */
197 /* Ignore S4-assertion-width violation like original BIOS. */
198 printk(BIOS_WARNING,
199 "WARNING: Ignoring S4-assertion-width violation.\n");
200 /* Bit2 is R/WC, so it will clear itself below. */
201 }
202
203 if (reg8 & (1 << 7)) { /* interrupted RAM init */
204 /* Don't enable S4-assertion stretch. Makes trouble on roda/rk9.
205 reg8 = pci_read_config8(PCI_DEV(0, 0x1f, 0), 0xa4);
206 pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa4, reg8 | 0x08);
207 */
208
209 /* Clear bit7. */
210 pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 & ~(1 << 7));
211
212 printk(BIOS_INFO, "Interrupted RAM init, reset required.\n");
213 gm45_early_reset();
214 }
215 /* Mark system to be in RAM init. */
216 pci_write_config8(PCI_DEV(0, 0x1f, 0), 0xa2, reg8 | (1 << 7));
217}
218
Patrick Georgi2efc8802012-11-06 11:03:53 +0100219/* For a detected DIMM, test the value of an SPD byte to
220 match the expected value after masking some bits. */
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200221static int test_dimm(sysinfo_t *const sysinfo,
222 int dimm, int addr, int bitmask, int expected)
Patrick Georgi2efc8802012-11-06 11:03:53 +0100223{
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200224 return (smbus_read_byte(sysinfo->spd_map[dimm], addr) & bitmask) == expected;
Patrick Georgi2efc8802012-11-06 11:03:53 +0100225}
226
227/* This function dies if dimm is unsuitable for the chipset. */
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200228static void verify_ddr3_dimm(sysinfo_t *const sysinfo, int dimm)
Patrick Georgi2efc8802012-11-06 11:03:53 +0100229{
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200230 if (!test_dimm(sysinfo, dimm, 3, 15, 3))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100231 die("Chipset only supports SO-DIMM\n");
232
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200233 if (!test_dimm(sysinfo, dimm, 8, 0x18, 0))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100234 die("Chipset doesn't support ECC RAM\n");
235
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200236 if (!test_dimm(sysinfo, dimm, 7, 0x38, 0) &&
237 !test_dimm(sysinfo, dimm, 7, 0x38, 8))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100238 die("Chipset wants single or double sided DIMMs\n");
239
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200240 if (!test_dimm(sysinfo, dimm, 7, 7, 1) &&
241 !test_dimm(sysinfo, dimm, 7, 7, 2))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100242 die("Chipset requires x8 or x16 width\n");
243
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200244 if (!test_dimm(sysinfo, dimm, 4, 0x0f, 0) &&
245 !test_dimm(sysinfo, dimm, 4, 0x0f, 1) &&
246 !test_dimm(sysinfo, dimm, 4, 0x0f, 2) &&
247 !test_dimm(sysinfo, dimm, 4, 0x0f, 3))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100248 die("Chipset requires 256Mb, 512Mb, 1Gb or 2Gb chips.");
249
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200250 if (!test_dimm(sysinfo, dimm, 4, 0x70, 0))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100251 die("Chipset requires 8 banks on DDR3\n");
252
253 /* How to check if burst length is 8?
254 Other values are not supported, are they even possible? */
255
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200256 if (!test_dimm(sysinfo, dimm, 10, 0xff, 1))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100257 die("Code assumes 1/8ns MTB\n");
258
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200259 if (!test_dimm(sysinfo, dimm, 11, 0xff, 8))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100260 die("Code assumes 1/8ns MTB\n");
261
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200262 if (!test_dimm(sysinfo, dimm, 62, 0x9f, 0) &&
263 !test_dimm(sysinfo, dimm, 62, 0x9f, 1) &&
264 !test_dimm(sysinfo, dimm, 62, 0x9f, 2) &&
265 !test_dimm(sysinfo, dimm, 62, 0x9f, 3) &&
266 !test_dimm(sysinfo, dimm, 62, 0x9f, 5))
Patrick Georgi2efc8802012-11-06 11:03:53 +0100267 die("Only raw card types A, B, C, D and F are supported.\n");
268}
269
270/* For every detected DIMM, test if it's suitable for the chipset. */
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200271static void verify_ddr3(sysinfo_t *const sysinfo, int mask)
Patrick Georgi2efc8802012-11-06 11:03:53 +0100272{
273 int cur = 0;
274 while (mask) {
275 if (mask & 1) {
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200276 verify_ddr3_dimm(sysinfo, cur);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100277 }
278 mask >>= 1;
279 cur++;
280 }
281}
282
Patrick Georgi2efc8802012-11-06 11:03:53 +0100283typedef struct {
284 int dimm_mask;
285 struct {
286 unsigned int rows;
287 unsigned int cols;
288 unsigned int chip_capacity;
289 unsigned int banks;
290 unsigned int ranks;
291 unsigned int cas_latencies;
292 unsigned int tAAmin;
293 unsigned int tCKmin;
294 unsigned int width;
295 unsigned int tRAS;
296 unsigned int tRP;
297 unsigned int tRCD;
298 unsigned int tWR;
299 unsigned int page_size;
300 unsigned int raw_card;
301 } channel[2];
302} spdinfo_t;
303/*
304 * This function collects RAM characteristics from SPD, assuming that RAM
305 * is generally within chipset's requirements, since verify_ddr3() passed.
306 */
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200307static void collect_ddr3(sysinfo_t *const sysinfo, spdinfo_t *const config)
Patrick Georgi2efc8802012-11-06 11:03:53 +0100308{
309 int mask = config->dimm_mask;
310 int cur = 0;
311 while (mask != 0) {
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200312 /* FIXME: support several dimms on same channel. */
313 if ((mask & 1) && sysinfo->spd_map[2 * cur]) {
Patrick Georgi2efc8802012-11-06 11:03:53 +0100314 int tmp;
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200315 const int smb_addr = sysinfo->spd_map[2 * cur];
Patrick Georgi2efc8802012-11-06 11:03:53 +0100316
317 config->channel[cur].rows = ((smbus_read_byte(smb_addr, 5) >> 3) & 7) + 12;
318 config->channel[cur].cols = (smbus_read_byte(smb_addr, 5) & 7) + 9;
319
320 config->channel[cur].chip_capacity = smbus_read_byte(smb_addr, 4) & 0xf;
321
322 config->channel[cur].banks = 8; /* GM45 only accepts this for DDR3.
323 verify_ddr3() fails for other values. */
324 config->channel[cur].ranks = ((smbus_read_byte(smb_addr, 7) >> 3) & 7) + 1;
325
326 config->channel[cur].cas_latencies =
327 ((smbus_read_byte(smb_addr, 15) << 8) | smbus_read_byte(smb_addr, 14))
328 << 4; /* so bit x is CAS x */
329 config->channel[cur].tAAmin = smbus_read_byte(smb_addr, 16); /* in MTB */
330 config->channel[cur].tCKmin = smbus_read_byte(smb_addr, 12); /* in MTB */
331
332 config->channel[cur].width = smbus_read_byte(smb_addr, 7) & 7;
333 config->channel[cur].page_size = config->channel[cur].width *
334 (1 << config->channel[cur].cols); /* in Bytes */
335
336 tmp = smbus_read_byte(smb_addr, 21);
337 config->channel[cur].tRAS = smbus_read_byte(smb_addr, 22) | ((tmp & 0xf) << 8);
338 config->channel[cur].tRP = smbus_read_byte(smb_addr, 20);
339 config->channel[cur].tRCD = smbus_read_byte(smb_addr, 18);
340 config->channel[cur].tWR = smbus_read_byte(smb_addr, 17);
341
342 config->channel[cur].raw_card = smbus_read_byte(smb_addr, 62) & 0x1f;
343 }
344 cur++;
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200345 mask >>= 2;
Patrick Georgi2efc8802012-11-06 11:03:53 +0100346 }
347}
348
Patrick Georgi2efc8802012-11-06 11:03:53 +0100349static fsb_clock_t read_fsb_clock(void)
350{
351 switch (MCHBAR32(CLKCFG_MCHBAR) & CLKCFG_FSBCLK_MASK) {
352 case 6:
353 return FSB_CLOCK_1067MHz;
354 case 2:
355 return FSB_CLOCK_800MHz;
356 case 3:
357 return FSB_CLOCK_667MHz;
358 default:
359 die("Unsupported FSB clock.\n");
360 }
361}
362static mem_clock_t clock_index(const unsigned int clock)
363{
364 switch (clock) {
365 case 533: return MEM_CLOCK_533MHz;
366 case 400: return MEM_CLOCK_400MHz;
367 case 333: return MEM_CLOCK_333MHz;
368 default: die("Unknown clock value.\n");
369 }
370 return -1; /* Won't be reached. */
371}
372static void normalize_clock(unsigned int *const clock)
373{
374 if (*clock >= 533)
375 *clock = 533;
376 else if (*clock >= 400)
377 *clock = 400;
378 else if (*clock >= 333)
379 *clock = 333;
380 else
381 *clock = 0;
382}
383static void lower_clock(unsigned int *const clock)
384{
385 --*clock;
386 normalize_clock(clock);
387}
388static unsigned int find_common_clock_cas(sysinfo_t *const sysinfo,
389 const spdinfo_t *const spdinfo)
390{
391 /* various constraints must be fulfilled:
392 CAS * tCK < 20ns == 160MTB
393 tCK_max >= tCK >= tCK_min
394 CAS >= roundup(tAA_min/tCK)
395 CAS supported
396 Clock(MHz) = 1000 / tCK(ns)
397 Clock(MHz) = 8000 / tCK(MTB)
398 AND BTW: Clock(MT) = 2000 / tCK(ns) - intel uses MTs but calls them MHz
399 */
400 int i;
401
402 /* Calculate common cas_latencies mask, tCKmin and tAAmin. */
403 unsigned int cas_latencies = (unsigned int)-1;
404 unsigned int tCKmin = 0, tAAmin = 0;
405 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
406 cas_latencies &= spdinfo->channel[i].cas_latencies;
407 if (spdinfo->channel[i].tCKmin > tCKmin)
408 tCKmin = spdinfo->channel[i].tCKmin;
409 if (spdinfo->channel[i].tAAmin > tAAmin)
410 tAAmin = spdinfo->channel[i].tAAmin;
411 }
412
413 /* Get actual value of fsb clock. */
414 sysinfo->selected_timings.fsb_clock = read_fsb_clock();
415 unsigned int fsb_mhz = 0;
416 switch (sysinfo->selected_timings.fsb_clock) {
417 case FSB_CLOCK_1067MHz: fsb_mhz = 1067; break;
418 case FSB_CLOCK_800MHz: fsb_mhz = 800; break;
419 case FSB_CLOCK_667MHz: fsb_mhz = 667; break;
420 }
421
422 unsigned int clock = 8000 / tCKmin;
423 if ((clock > sysinfo->max_ddr3_mt / 2) || (clock > fsb_mhz / 2)) {
Elyes HAOUASba9b5042019-12-19 07:47:52 +0100424 int new_clock = MIN(sysinfo->max_ddr3_mt / 2, fsb_mhz / 2);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100425 printk(BIOS_SPEW, "DIMMs support %d MHz, but chipset only runs at up to %d. Limiting...\n",
426 clock, new_clock);
427 clock = new_clock;
428 }
429 normalize_clock(&clock);
430
431 /* Find compatible clock / CAS pair. */
432 unsigned int tCKproposed;
433 unsigned int CAS;
434 while (1) {
435 if (!clock)
436 die("Couldn't find compatible clock / CAS settings.\n");
437 tCKproposed = 8000 / clock;
Elyes HAOUAS6df3b642018-11-26 22:53:49 +0100438 CAS = DIV_ROUND_UP(tAAmin, tCKproposed);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100439 printk(BIOS_SPEW, "Trying CAS %u, tCK %u.\n", CAS, tCKproposed);
440 for (; CAS <= DDR3_MAX_CAS; ++CAS)
441 if (cas_latencies & (1 << CAS))
442 break;
443 if ((CAS <= DDR3_MAX_CAS) && (CAS * tCKproposed < 160)) {
444 /* Found good CAS. */
445 printk(BIOS_SPEW, "Found compatible clock / CAS pair: %u / %u.\n", clock, CAS);
446 break;
447 }
448 lower_clock(&clock);
449 }
450 sysinfo->selected_timings.CAS = CAS;
451 sysinfo->selected_timings.mem_clock = clock_index(clock);
452
453 return tCKproposed;
454}
455
456static void calculate_derived_timings(sysinfo_t *const sysinfo,
457 const unsigned int tCLK,
458 const spdinfo_t *const spdinfo)
459{
460 int i;
461
462 /* Calculate common tRASmin, tRPmin, tRCDmin and tWRmin. */
463 unsigned int tRASmin = 0, tRPmin = 0, tRCDmin = 0, tWRmin = 0;
464 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
465 if (spdinfo->channel[i].tRAS > tRASmin)
466 tRASmin = spdinfo->channel[i].tRAS;
467 if (spdinfo->channel[i].tRP > tRPmin)
468 tRPmin = spdinfo->channel[i].tRP;
469 if (spdinfo->channel[i].tRCD > tRCDmin)
470 tRCDmin = spdinfo->channel[i].tRCD;
471 if (spdinfo->channel[i].tWR > tWRmin)
472 tWRmin = spdinfo->channel[i].tWR;
473 }
Elyes HAOUAS6df3b642018-11-26 22:53:49 +0100474 tRASmin = DIV_ROUND_UP(tRASmin, tCLK);
475 tRPmin = DIV_ROUND_UP(tRPmin, tCLK);
476 tRCDmin = DIV_ROUND_UP(tRCDmin, tCLK);
477 tWRmin = DIV_ROUND_UP(tWRmin, tCLK);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100478
479 /* Lookup tRFC and calculate common tRFCmin. */
480 const unsigned int tRFC_from_clock_and_cap[][4] = {
481 /* CAP_256M CAP_512M CAP_1G CAP_2G */
482 /* 533MHz */ { 40, 56, 68, 104 },
483 /* 400MHz */ { 30, 42, 51, 78 },
484 /* 333MHz */ { 25, 35, 43, 65 },
485 };
486 unsigned int tRFCmin = 0;
487 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
488 const unsigned int tRFC = tRFC_from_clock_and_cap
489 [sysinfo->selected_timings.mem_clock][spdinfo->channel[i].chip_capacity];
490 if (tRFC > tRFCmin)
491 tRFCmin = tRFC;
492 }
493
494 /* Calculate common tRD from CAS and FSB and DRAM clocks. */
495 unsigned int tRDmin = sysinfo->selected_timings.CAS;
496 switch (sysinfo->selected_timings.fsb_clock) {
497 case FSB_CLOCK_667MHz:
498 tRDmin += 1;
499 break;
500 case FSB_CLOCK_800MHz:
501 tRDmin += 2;
502 break;
503 case FSB_CLOCK_1067MHz:
504 tRDmin += 3;
505 if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT)
506 tRDmin += 1;
507 break;
508 }
509
510 /* Calculate common tRRDmin. */
511 unsigned int tRRDmin = 0;
512 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
513 unsigned int tRRD = 2 + (spdinfo->channel[i].page_size / 1024);
514 if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT)
515 tRRD += (spdinfo->channel[i].page_size / 1024);
516 if (tRRD > tRRDmin)
517 tRRDmin = tRRD;
518 }
519
520 /* Lookup and calculate common tFAWmin. */
521 unsigned int tFAW_from_pagesize_and_clock[][3] = {
522 /* 533MHz 400MHz 333MHz */
523 /* 1K */ { 20, 15, 13 },
524 /* 2K */ { 27, 20, 17 },
525 };
526 unsigned int tFAWmin = 0;
527 FOR_EACH_POPULATED_CHANNEL(sysinfo->dimms, i) {
528 const unsigned int tFAW = tFAW_from_pagesize_and_clock
529 [spdinfo->channel[i].page_size / 1024 - 1]
530 [sysinfo->selected_timings.mem_clock];
531 if (tFAW > tFAWmin)
532 tFAWmin = tFAW;
533 }
534
535 /* Refresh rate is fixed. */
536 unsigned int tWL;
537 if (sysinfo->selected_timings.mem_clock == MEM_CLOCK_1067MT) {
538 tWL = 6;
539 } else {
540 tWL = 5;
541 }
542
543 printk(BIOS_SPEW, "Timing values:\n"
544 " tCLK: %3u\n"
545 " tRAS: %3u\n"
546 " tRP: %3u\n"
547 " tRCD: %3u\n"
548 " tRFC: %3u\n"
549 " tWR: %3u\n"
550 " tRD: %3u\n"
551 " tRRD: %3u\n"
552 " tFAW: %3u\n"
553 " tWL: %3u\n",
554 tCLK, tRASmin, tRPmin, tRCDmin, tRFCmin, tWRmin, tRDmin, tRRDmin, tFAWmin, tWL);
555
556 sysinfo->selected_timings.tRAS = tRASmin;
557 sysinfo->selected_timings.tRP = tRPmin;
558 sysinfo->selected_timings.tRCD = tRCDmin;
559 sysinfo->selected_timings.tRFC = tRFCmin;
560 sysinfo->selected_timings.tWR = tWRmin;
561 sysinfo->selected_timings.tRD = tRDmin;
562 sysinfo->selected_timings.tRRD = tRRDmin;
563 sysinfo->selected_timings.tFAW = tFAWmin;
564 sysinfo->selected_timings.tWL = tWL;
565}
566
567static void collect_dimm_config(sysinfo_t *const sysinfo)
568{
569 int i;
570 spdinfo_t spdinfo;
571
572 spdinfo.dimm_mask = 0;
573 sysinfo->spd_type = 0;
574
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200575 for (i = 0; i < 4; i++)
576 if (sysinfo->spd_map[i]) {
577 const u8 spd = smbus_read_byte(sysinfo->spd_map[i], 2);
578 printk (BIOS_DEBUG, "%x:%x:%x\n",
579 i, sysinfo->spd_map[i],
580 spd);
581 if ((spd == 7) || (spd == 8) || (spd == 0xb)) {
582 spdinfo.dimm_mask |= 1 << i;
583 if (sysinfo->spd_type && sysinfo->spd_type != spd) {
584 die("Multiple types of DIMM installed in the system, don't do that!\n");
585 }
586 sysinfo->spd_type = spd;
Patrick Georgi2efc8802012-11-06 11:03:53 +0100587 }
Patrick Georgi2efc8802012-11-06 11:03:53 +0100588 }
Patrick Georgi2efc8802012-11-06 11:03:53 +0100589 if (spdinfo.dimm_mask == 0) {
590 die("Could not find any DIMM.\n");
591 }
592
593 /* Normalize spd_type to 1, 2, 3. */
594 sysinfo->spd_type = (sysinfo->spd_type & 1) | ((sysinfo->spd_type & 8) >> 2);
595 printk(BIOS_SPEW, "DDR mask %x, DDR %d\n", spdinfo.dimm_mask, sysinfo->spd_type);
596
597 if (sysinfo->spd_type == DDR2) {
598 die("DDR2 not supported at this time.\n");
599 } else if (sysinfo->spd_type == DDR3) {
Vladimir Serbinenkoc4d89482014-06-05 09:14:48 +0200600 verify_ddr3(sysinfo, spdinfo.dimm_mask);
601 collect_ddr3(sysinfo, &spdinfo);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100602 } else {
603 die("Will never support DDR1.\n");
604 }
605
606 for (i = 0; i < 2; i++) {
607 if ((spdinfo.dimm_mask >> (i*2)) & 1) {
608 printk(BIOS_SPEW, "Bank %d populated:\n"
609 " Raw card type: %4c\n"
610 " Row addr bits: %4u\n"
611 " Col addr bits: %4u\n"
612 " byte width: %4u\n"
613 " page size: %4u\n"
614 " banks: %4u\n"
615 " ranks: %4u\n"
616 " tAAmin: %3u\n"
617 " tCKmin: %3u\n"
618 " Max clock: %3u MHz\n"
619 " CAS: 0x%04x\n",
620 i, spdinfo.channel[i].raw_card + 'A',
621 spdinfo.channel[i].rows, spdinfo.channel[i].cols,
622 spdinfo.channel[i].width, spdinfo.channel[i].page_size,
623 spdinfo.channel[i].banks, spdinfo.channel[i].ranks,
624 spdinfo.channel[i].tAAmin, spdinfo.channel[i].tCKmin,
625 8000 / spdinfo.channel[i].tCKmin, spdinfo.channel[i].cas_latencies);
626 }
627 }
628
629 FOR_EACH_CHANNEL(i) {
630 sysinfo->dimms[i].card_type =
631 (spdinfo.dimm_mask & (1 << (i * 2))) ? spdinfo.channel[i].raw_card + 0xa : 0;
632 }
633
634 /* Find common memory clock and CAS. */
635 const unsigned int tCLK = find_common_clock_cas(sysinfo, &spdinfo);
636
637 /* Calculate other timings from clock and CAS. */
638 calculate_derived_timings(sysinfo, tCLK, &spdinfo);
639
640 /* Initialize DIMM infos. */
641 /* Always prefer interleaved over async channel mode. */
642 FOR_EACH_CHANNEL(i) {
643 IF_CHANNEL_POPULATED(sysinfo->dimms, i) {
644 sysinfo->dimms[i].banks = spdinfo.channel[i].banks;
645 sysinfo->dimms[i].ranks = spdinfo.channel[i].ranks;
646
647 /* .width is 1 for x8 or 2 for x16, bus width is 8 bytes. */
648 const unsigned int chips_per_rank = 8 / spdinfo.channel[i].width;
649
650 sysinfo->dimms[i].chip_width = spdinfo.channel[i].width;
651 sysinfo->dimms[i].chip_capacity = spdinfo.channel[i].chip_capacity;
652 sysinfo->dimms[i].page_size = spdinfo.channel[i].page_size * chips_per_rank;
653 sysinfo->dimms[i].rank_capacity_mb =
654 /* offset of chip_capacity is 8 (256M), therefore, add 8
655 chip_capacity is in Mbit, we want MByte, therefore, subtract 3 */
656 (1 << (spdinfo.channel[i].chip_capacity + 8 - 3)) * chips_per_rank;
657 }
658 }
659 if (CHANNEL_IS_POPULATED(sysinfo->dimms, 0) &&
660 CHANNEL_IS_POPULATED(sysinfo->dimms, 1))
661 sysinfo->selected_timings.channel_mode = CHANNEL_MODE_DUAL_INTERLEAVED;
662 else
663 sysinfo->selected_timings.channel_mode = CHANNEL_MODE_SINGLE;
664}
665
666static void reset_on_bad_warmboot(void)
667{
668 /* Check self refresh channel status. */
669 const u32 reg = MCHBAR32(PMSTS_MCHBAR);
670 /* Clear status bits. R/WC */
671 MCHBAR32(PMSTS_MCHBAR) = reg;
672 if ((reg & PMSTS_WARM_RESET) && !(reg & PMSTS_BOTH_SELFREFRESH)) {
673 printk(BIOS_INFO, "DRAM was not in self refresh "
674 "during warm boot, reset required.\n");
675 gm45_early_reset();
676 }
677}
678
679static void set_system_memory_frequency(const timings_t *const timings)
680{
681 MCHBAR16(CLKCFG_MCHBAR + 0x60) &= ~(1 << 15);
682 MCHBAR16(CLKCFG_MCHBAR + 0x48) &= ~(1 << 15);
683
684 /* Calculate wanted frequency setting. */
685 const int want_freq = 6 - timings->mem_clock;
686
687 /* Read current memory frequency. */
688 const u32 clkcfg = MCHBAR32(CLKCFG_MCHBAR);
689 int cur_freq = (clkcfg & CLKCFG_MEMCLK_MASK) >> CLKCFG_MEMCLK_SHIFT;
690 if (0 == cur_freq) {
691 /* Try memory frequency from scratchpad. */
692 printk(BIOS_DEBUG, "Reading current memory frequency from scratchpad.\n");
693 cur_freq = (MCHBAR16(SSKPD_MCHBAR) & SSKPD_CLK_MASK) >> SSKPD_CLK_SHIFT;
694 }
695
696 if (cur_freq != want_freq) {
697 printk(BIOS_DEBUG, "Changing memory frequency: old %x, new %x.\n", cur_freq, want_freq);
698 /* When writing new frequency setting, reset, then set update bit. */
699 MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~(CLKCFG_UPDATE | CLKCFG_MEMCLK_MASK)) |
700 (want_freq << CLKCFG_MEMCLK_SHIFT);
701 MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~CLKCFG_MEMCLK_MASK) |
702 (want_freq << CLKCFG_MEMCLK_SHIFT) | CLKCFG_UPDATE;
703 /* Reset update bit. */
704 MCHBAR32(CLKCFG_MCHBAR) &= ~CLKCFG_UPDATE;
705 }
706
707 if ((timings->fsb_clock == FSB_CLOCK_1067MHz) && (timings->mem_clock == MEM_CLOCK_667MT)) {
708 MCHBAR32(CLKCFG_MCHBAR + 0x16) = 0x000030f0;
709 MCHBAR32(CLKCFG_MCHBAR + 0x64) = 0x000050c1;
710
711 MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~(1 << 12)) | (1 << 17);
712 MCHBAR32(CLKCFG_MCHBAR) |= (1 << 17) | (1 << 12);
713 MCHBAR32(CLKCFG_MCHBAR) &= ~(1 << 12);
714
715 MCHBAR32(CLKCFG_MCHBAR + 0x04) = 0x9bad1f1f;
716 MCHBAR8(CLKCFG_MCHBAR + 0x08) = 0xf4;
717 MCHBAR8(CLKCFG_MCHBAR + 0x0a) = 0x43;
718 MCHBAR8(CLKCFG_MCHBAR + 0x0c) = 0x10;
719 MCHBAR8(CLKCFG_MCHBAR + 0x0d) = 0x80;
720 MCHBAR32(CLKCFG_MCHBAR + 0x50) = 0x0b0e151b;
721 MCHBAR8(CLKCFG_MCHBAR + 0x54) = 0xb4;
722 MCHBAR8(CLKCFG_MCHBAR + 0x55) = 0x10;
723 MCHBAR8(CLKCFG_MCHBAR + 0x56) = 0x08;
724
725 MCHBAR32(CLKCFG_MCHBAR) |= (1 << 10);
726 MCHBAR32(CLKCFG_MCHBAR) |= (1 << 11);
727 MCHBAR32(CLKCFG_MCHBAR) &= ~(1 << 10);
728 MCHBAR32(CLKCFG_MCHBAR) &= ~(1 << 11);
729 }
730
731 MCHBAR32(CLKCFG_MCHBAR + 0x48) |= 0x3f << 24;
732}
733
734int raminit_read_vco_index(void)
735{
Nico Huberd85a71a2016-11-27 14:43:12 +0100736 switch (MCHBAR8(HPLLVCO_MCHBAR) & 0x7) {
Patrick Georgi2efc8802012-11-06 11:03:53 +0100737 case VCO_2666:
738 return 0;
739 case VCO_3200:
740 return 1;
741 case VCO_4000:
742 return 2;
743 case VCO_5333:
744 return 3;
745 default:
746 die("Unknown VCO frequency.\n");
747 return 0;
748 }
749}
750static void set_igd_memory_frequencies(const sysinfo_t *const sysinfo)
751{
752 const int gfx_idx = ((sysinfo->gfx_type == GMCH_GS45) &&
753 !sysinfo->gs45_low_power_mode)
754 ? (GMCH_GS45 + 1) : sysinfo->gfx_type;
755
756 /* Render and sampler frequency values seem to be some kind of factor. */
757 const u16 render_freq_from_vco_and_gfxtype[][10] = {
758 /* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
759 /* VCO 2666 */ { 0xd, 0xd, 0xe, 0xd, 0xb, 0xd, 0xb, 0xa, 0xd },
760 /* VCO 3200 */ { 0xd, 0xe, 0xf, 0xd, 0xb, 0xd, 0xb, 0x9, 0xd },
761 /* VCO 4000 */ { 0xc, 0xd, 0xf, 0xc, 0xa, 0xc, 0xa, 0x9, 0xc },
762 /* VCO 5333 */ { 0xb, 0xc, 0xe, 0xb, 0x9, 0xb, 0x9, 0x8, 0xb },
763 };
764 const u16 sampler_freq_from_vco_and_gfxtype[][10] = {
765 /* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
766 /* VCO 2666 */ { 0xc, 0xc, 0xd, 0xc, 0x9, 0xc, 0x9, 0x8, 0xc },
767 /* VCO 3200 */ { 0xc, 0xd, 0xe, 0xc, 0x9, 0xc, 0x9, 0x8, 0xc },
768 /* VCO 4000 */ { 0xa, 0xc, 0xd, 0xa, 0x8, 0xa, 0x8, 0x8, 0xa },
769 /* VCO 5333 */ { 0xa, 0xa, 0xc, 0xa, 0x7, 0xa, 0x7, 0x6, 0xa },
770 };
771 const u16 display_clock_select_from_gfxtype[] = {
772 /* GM45 GM47 GM49 GE45 GL40 GL43 GS40 GS45 (perf) */
773 1, 1, 1, 1, 1, 1, 1, 0, 1
774 };
775
776 if (pci_read_config16(GCFGC_PCIDEV, 0) != 0x8086) {
777 printk(BIOS_DEBUG, "Skipping IGD memory frequency setting.\n");
778 return;
779 }
780
781 MCHBAR16(0x119e) = 0xa800;
782 MCHBAR16(0x11c0) = (MCHBAR16(0x11c0) & ~0xff00) | (0x01 << 8);
783 MCHBAR16(0x119e) = 0xb800;
784 MCHBAR8(0x0f10) |= 1 << 7;
785
786 /* Read VCO. */
787 const int vco_idx = raminit_read_vco_index();
788 printk(BIOS_DEBUG, "Setting IGD memory frequencies for VCO #%d.\n", vco_idx);
789
790 const u32 freqcfg =
791 ((render_freq_from_vco_and_gfxtype[vco_idx][gfx_idx]
792 << GCFGC_CR_SHIFT) & GCFGC_CR_MASK) |
793 ((sampler_freq_from_vco_and_gfxtype[vco_idx][gfx_idx]
794 << GCFGC_CS_SHIFT) & GCFGC_CS_MASK);
795
796 /* Set frequencies, clear update bit. */
797 u32 gcfgc = pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET);
798 gcfgc &= ~(GCFGC_CS_MASK | GCFGC_UPDATE | GCFGC_CR_MASK);
799 gcfgc |= freqcfg;
800 pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET, gcfgc);
801
802 /* Set frequencies, set update bit. */
803 gcfgc = pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET);
804 gcfgc &= ~(GCFGC_CS_MASK | GCFGC_CR_MASK);
805 gcfgc |= freqcfg | GCFGC_UPDATE;
806 pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET, gcfgc);
807
808 /* Clear update bit. */
Angel Ponsb0535832020-06-08 11:46:58 +0200809 pci_and_config16(GCFGC_PCIDEV, GCFGC_OFFSET, ~GCFGC_UPDATE);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100810
811 /* Set display clock select bit. */
812 pci_write_config16(GCFGC_PCIDEV, GCFGC_OFFSET,
813 (pci_read_config16(GCFGC_PCIDEV, GCFGC_OFFSET) & ~GCFGC_CD_MASK) |
814 (display_clock_select_from_gfxtype[gfx_idx] << GCFGC_CD_SHIFT));
815}
816
817static void configure_dram_control_mode(const timings_t *const timings, const dimminfo_t *const dimms)
818{
819 int ch, r;
820
821 FOR_EACH_CHANNEL(ch) {
822 unsigned int mchbar = CxDRC0_MCHBAR(ch);
823 u32 cxdrc = MCHBAR32(mchbar);
824 cxdrc &= ~CxDRC0_RANKEN_MASK;
825 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
826 cxdrc |= CxDRC0_RANKEN(r);
827 cxdrc = (cxdrc & ~CxDRC0_RMS_MASK) |
828 /* Always 7.8us for DDR3: */
829 CxDRC0_RMS_78US;
830 MCHBAR32(mchbar) = cxdrc;
831
832 mchbar = CxDRC1_MCHBAR(ch);
833 cxdrc = MCHBAR32(mchbar);
834 cxdrc |= CxDRC1_NOTPOP_MASK;
835 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
836 cxdrc &= ~CxDRC1_NOTPOP(r);
837 cxdrc |= CxDRC1_MUSTWR;
838 MCHBAR32(mchbar) = cxdrc;
839
840 mchbar = CxDRC2_MCHBAR(ch);
841 cxdrc = MCHBAR32(mchbar);
842 cxdrc |= CxDRC2_NOTPOP_MASK;
843 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r)
844 cxdrc &= ~CxDRC2_NOTPOP(r);
845 cxdrc |= CxDRC2_MUSTWR;
846 if (timings->mem_clock == MEM_CLOCK_1067MT)
847 cxdrc |= CxDRC2_CLK1067MT;
848 MCHBAR32(mchbar) = cxdrc;
849 }
850}
851
852static void rcomp_initialization(const stepping_t stepping, const int sff)
853{
Elyes HAOUAS3d450002018-08-09 18:55:58 +0200854 /* Program RCOMP codes. */
Patrick Georgi2efc8802012-11-06 11:03:53 +0100855 if (sff)
856 die("SFF platform unsupported in RCOMP initialization.\n");
857 /* Values are for DDR3. */
858 MCHBAR8(0x6ac) &= ~0x0f;
859 MCHBAR8(0x6b0) = 0x55;
860 MCHBAR8(0x6ec) &= ~0x0f;
861 MCHBAR8(0x6f0) = 0x66;
862 MCHBAR8(0x72c) &= ~0x0f;
863 MCHBAR8(0x730) = 0x66;
864 MCHBAR8(0x76c) &= ~0x0f;
865 MCHBAR8(0x770) = 0x66;
866 MCHBAR8(0x7ac) &= ~0x0f;
867 MCHBAR8(0x7b0) = 0x66;
868 MCHBAR8(0x7ec) &= ~0x0f;
869 MCHBAR8(0x7f0) = 0x66;
870 MCHBAR8(0x86c) &= ~0x0f;
871 MCHBAR8(0x870) = 0x55;
872 MCHBAR8(0x8ac) &= ~0x0f;
873 MCHBAR8(0x8b0) = 0x66;
874 /* ODT multiplier bits. */
875 MCHBAR32(0x04d0) = (MCHBAR32(0x04d0) & ~((7 << 3) | (7 << 0))) | (2 << 3) | (2 << 0);
876
877 /* Perform RCOMP calibration for DDR3. */
878 raminit_rcomp_calibration(stepping);
879
880 /* Run initial RCOMP. */
881 MCHBAR32(0x418) |= 1 << 17;
882 MCHBAR32(0x40c) &= ~(1 << 23);
883 MCHBAR32(0x41c) &= ~((1 << 7) | (1 << 3));
884 MCHBAR32(0x400) |= 1;
885 while (MCHBAR32(0x400) & 1) {}
886
887 /* Run second RCOMP. */
888 MCHBAR32(0x40c) |= 1 << 19;
889 MCHBAR32(0x400) |= 1;
890 while (MCHBAR32(0x400) & 1) {}
891
892 /* Cleanup and start periodic RCOMP. */
893 MCHBAR32(0x40c) &= ~(1 << 19);
894 MCHBAR32(0x40c) |= 1 << 23;
895 MCHBAR32(0x418) &= ~(1 << 17);
896 MCHBAR32(0x41c) |= (1 << 7) | (1 << 3);
897 MCHBAR32(0x400) |= (1 << 1);
898}
899
900static void dram_powerup(const int resume)
901{
Arthur Heymans10141c32016-10-27 00:31:41 +0200902 udelay(200);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100903 MCHBAR32(CLKCFG_MCHBAR) = (MCHBAR32(CLKCFG_MCHBAR) & ~(1 << 3)) | (3 << 21);
904 if (!resume) {
905 MCHBAR32(0x1434) |= (1 << 10);
Arthur Heymans10141c32016-10-27 00:31:41 +0200906 udelay(1);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100907 }
908 MCHBAR32(0x1434) |= (1 << 6);
909 if (!resume) {
Arthur Heymans10141c32016-10-27 00:31:41 +0200910 udelay(1);
Patrick Georgi2efc8802012-11-06 11:03:53 +0100911 MCHBAR32(0x1434) |= (1 << 9);
912 MCHBAR32(0x1434) &= ~(1 << 10);
913 udelay(500);
914 }
915}
916static void dram_program_timings(const timings_t *const timings)
917{
918 /* Values are for DDR3. */
919 const int burst_length = 8;
920 const int tWTR = 4, tRTP = 1;
921 int i;
922
923 FOR_EACH_CHANNEL(i) {
924 u32 reg = MCHBAR32(CxDRT0_MCHBAR(i));
925 const int btb_wtp = timings->tWL + burst_length/2 + timings->tWR;
926 const int btb_wtr = timings->tWL + burst_length/2 + tWTR;
927 reg = (reg & ~(CxDRT0_BtB_WtP_MASK | CxDRT0_BtB_WtR_MASK)) |
928 ((btb_wtp << CxDRT0_BtB_WtP_SHIFT) & CxDRT0_BtB_WtP_MASK) |
929 ((btb_wtr << CxDRT0_BtB_WtR_SHIFT) & CxDRT0_BtB_WtR_MASK);
930 if (timings->mem_clock != MEM_CLOCK_1067MT) {
931 reg = (reg & ~(0x7 << 15)) | ((9 - timings->CAS) << 15);
932 reg = (reg & ~(0xf << 10)) | ((timings->CAS - 3) << 10);
933 } else {
934 reg = (reg & ~(0x7 << 15)) | ((10 - timings->CAS) << 15);
935 reg = (reg & ~(0xf << 10)) | ((timings->CAS - 4) << 10);
936 }
937 reg = (reg & ~(0x7 << 5)) | (3 << 5);
938 reg = (reg & ~(0x7 << 0)) | (1 << 0);
939 MCHBAR32(CxDRT0_MCHBAR(i)) = reg;
940
941 reg = MCHBAR32(CxDRT1_MCHBAR(i));
942 reg = (reg & ~(0x03 << 28)) | ((tRTP & 0x03) << 28);
943 reg = (reg & ~(0x1f << 21)) | ((timings->tRAS & 0x1f) << 21);
944 reg = (reg & ~(0x07 << 10)) | (((timings->tRRD - 2) & 0x07) << 10);
945 reg = (reg & ~(0x07 << 5)) | (((timings->tRCD - 2) & 0x07) << 5);
946 reg = (reg & ~(0x07 << 0)) | (((timings->tRP - 2) & 0x07) << 0);
947 MCHBAR32(CxDRT1_MCHBAR(i)) = reg;
948
949 reg = MCHBAR32(CxDRT2_MCHBAR(i));
950 reg = (reg & ~(0x1f << 17)) | ((timings->tFAW & 0x1f) << 17);
951 if (timings->mem_clock != MEM_CLOCK_1067MT) {
952 reg = (reg & ~(0x7 << 12)) | (0x2 << 12);
953 reg = (reg & ~(0xf << 6)) | (0x9 << 6);
954 } else {
955 reg = (reg & ~(0x7 << 12)) | (0x3 << 12);
956 reg = (reg & ~(0xf << 6)) | (0xc << 6);
957 }
958 reg = (reg & ~(0x1f << 0)) | (0x13 << 0);
959 MCHBAR32(CxDRT2_MCHBAR(i)) = reg;
960
961 reg = MCHBAR32(CxDRT3_MCHBAR(i));
962 reg |= 0x3 << 28;
963 reg = (reg & ~(0x03 << 26));
964 reg = (reg & ~(0x07 << 23)) | (((timings->CAS - 3) & 0x07) << 23);
965 reg = (reg & ~(0xff << 13)) | ((timings->tRFC & 0xff) << 13);
966 reg = (reg & ~(0x07 << 0)) | (((timings->tWL - 2) & 0x07) << 0);
967 MCHBAR32(CxDRT3_MCHBAR(i)) = reg;
968
969 reg = MCHBAR32(CxDRT4_MCHBAR(i));
970 static const u8 timings_by_clock[4][3] = {
971 /* 333MHz 400MHz 533MHz
972 667MT 800MT 1067MT */
973 { 0x07, 0x0a, 0x0d },
974 { 0x3a, 0x46, 0x5d },
975 { 0x0c, 0x0e, 0x18 },
976 { 0x21, 0x28, 0x35 },
977 };
978 const int clk_idx = 2 - timings->mem_clock;
979 reg = (reg & ~(0x01f << 27)) | (timings_by_clock[0][clk_idx] << 27);
980 reg = (reg & ~(0x3ff << 17)) | (timings_by_clock[1][clk_idx] << 17);
981 reg = (reg & ~(0x03f << 10)) | (timings_by_clock[2][clk_idx] << 10);
982 reg = (reg & ~(0x1ff << 0)) | (timings_by_clock[3][clk_idx] << 0);
983 MCHBAR32(CxDRT4_MCHBAR(i)) = reg;
984
985 reg = MCHBAR32(CxDRT5_MCHBAR(i));
986 if (timings->mem_clock == MEM_CLOCK_1067MT)
987 reg = (reg & ~(0xf << 28)) | (0x8 << 28);
988 reg = (reg & ~(0x00f << 22)) | ((burst_length/2 + timings->CAS + 2) << 22);
989 reg = (reg & ~(0x3ff << 12)) | (0x190 << 12);
990 reg = (reg & ~(0x00f << 4)) | ((timings->CAS - 2) << 4);
991 reg = (reg & ~(0x003 << 2)) | (0x001 << 2);
992 reg = (reg & ~(0x003 << 0));
993 MCHBAR32(CxDRT5_MCHBAR(i)) = reg;
994
995 reg = MCHBAR32(CxDRT6_MCHBAR(i));
996 reg = (reg & ~(0xffff << 16)) | (0x066a << 16); /* always 7.8us refresh rate for DDR3 */
997 reg |= (1 << 2);
998 MCHBAR32(CxDRT6_MCHBAR(i)) = reg;
999 }
1000}
1001
1002static void dram_program_banks(const dimminfo_t *const dimms)
1003{
1004 int ch, r;
1005
1006 FOR_EACH_CHANNEL(ch) {
1007 const int tRPALL = dimms[ch].banks == 8;
1008
1009 u32 reg = MCHBAR32(CxDRT1_MCHBAR(ch)) & ~(0x01 << 15);
1010 IF_CHANNEL_POPULATED(dimms, ch)
1011 reg |= tRPALL << 15;
1012 MCHBAR32(CxDRT1_MCHBAR(ch)) = reg;
1013
1014 reg = MCHBAR32(CxDRA_MCHBAR(ch)) & ~CxDRA_BANKS_MASK;
1015 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) {
1016 reg |= CxDRA_BANKS(r, dimms[ch].banks);
1017 }
1018 MCHBAR32(CxDRA_MCHBAR(ch)) = reg;
1019 }
1020}
1021
1022static void odt_setup(const timings_t *const timings, const int sff)
1023{
1024 /* Values are for DDR3. */
1025 int ch;
1026
1027 FOR_EACH_CHANNEL(ch) {
1028 u32 reg = MCHBAR32(CxODT_HIGH(ch));
1029 if (sff && (timings->mem_clock != MEM_CLOCK_1067MT))
1030 reg &= ~(0x3 << (61 - 32));
1031 else
1032 reg |= 0x3 << (61 - 32);
1033 reg = (reg & ~(0x3 << (52 - 32))) | (0x2 << (52 - 32));
1034 reg = (reg & ~(0x7 << (48 - 32))) | ((timings->CAS - 3) << (48 - 32));
1035 reg = (reg & ~(0xf << (44 - 32))) | (0x7 << (44 - 32));
1036 if (timings->mem_clock != MEM_CLOCK_1067MT) {
1037 reg = (reg & ~(0xf << (40 - 32))) | ((12 - timings->CAS) << (40 - 32));
1038 reg = (reg & ~(0xf << (36 - 32))) | (( 2 + timings->CAS) << (36 - 32));
1039 } else {
1040 reg = (reg & ~(0xf << (40 - 32))) | ((13 - timings->CAS) << (40 - 32));
1041 reg = (reg & ~(0xf << (36 - 32))) | (( 1 + timings->CAS) << (36 - 32));
1042 }
1043 reg = (reg & ~(0xf << (32 - 32))) | (0x7 << (32 - 32));
1044 MCHBAR32(CxODT_HIGH(ch)) = reg;
1045
1046 reg = MCHBAR32(CxODT_LOW(ch));
1047 reg = (reg & ~(0x7 << 28)) | (0x2 << 28);
1048 reg = (reg & ~(0x3 << 22)) | (0x2 << 22);
1049 reg = (reg & ~(0x7 << 12)) | (0x2 << 12);
1050 reg = (reg & ~(0x7 << 4)) | (0x2 << 4);
1051 switch (timings->mem_clock) {
1052 case MEM_CLOCK_667MT:
1053 reg = (reg & ~0x7);
1054 break;
1055 case MEM_CLOCK_800MT:
1056 reg = (reg & ~0x7) | 0x2;
1057 break;
1058 case MEM_CLOCK_1067MT:
1059 reg = (reg & ~0x7) | 0x5;
1060 break;
1061 }
1062 MCHBAR32(CxODT_LOW(ch)) = reg;
1063 }
1064}
1065
1066static void misc_settings(const timings_t *const timings,
1067 const stepping_t stepping)
1068{
1069 MCHBAR32(0x1260) = (MCHBAR32(0x1260) & ~((1 << 24) | 0x1f)) | timings->tRD;
1070 MCHBAR32(0x1360) = (MCHBAR32(0x1360) & ~((1 << 24) | 0x1f)) | timings->tRD;
1071
1072 MCHBAR8(0x1268) = (MCHBAR8(0x1268) & ~(0xf)) | timings->tWL;
1073 MCHBAR8(0x1368) = (MCHBAR8(0x1368) & ~(0xf)) | timings->tWL;
1074 MCHBAR8(0x12a0) = (MCHBAR8(0x12a0) & ~(0xf)) | 0xa;
1075 MCHBAR8(0x13a0) = (MCHBAR8(0x13a0) & ~(0xf)) | 0xa;
1076
1077 MCHBAR32(0x218) = (MCHBAR32(0x218) & ~((7 << 29) | (7 << 25) | (3 << 22) | (3 << 10))) |
1078 (4 << 29) | (3 << 25) | (0 << 22) | (1 << 10);
1079 MCHBAR32(0x220) = (MCHBAR32(0x220) & ~(7 << 16)) | (1 << 21) | (1 << 16);
1080 MCHBAR32(0x224) = (MCHBAR32(0x224) & ~(7 << 8)) | (3 << 8);
1081 if (stepping >= STEPPING_B1)
1082 MCHBAR8(0x234) |= (1 << 3);
1083}
1084
1085static void clock_crossing_setup(const fsb_clock_t fsb,
1086 const mem_clock_t ddr3clock,
1087 const dimminfo_t *const dimms)
1088{
1089 int ch;
1090
1091 static const u32 values_from_fsb_and_mem[][3][4] = {
1092 /* FSB 1067MHz */{
1093 /* DDR3-1067 */ { 0x00000000, 0x00000000, 0x00180006, 0x00810060 },
1094 /* DDR3-800 */ { 0x00000000, 0x00000000, 0x0000001c, 0x000300e0 },
1095 /* DDR3-667 */ { 0x00000000, 0x00001c00, 0x03c00038, 0x0007e000 },
1096 },
1097 /* FSB 800MHz */{
1098 /* DDR3-1067 */ { 0, 0, 0, 0 },
1099 /* DDR3-800 */ { 0x00000000, 0x00000000, 0x0030000c, 0x000300c0 },
1100 /* DDR3-667 */ { 0x00000000, 0x00000380, 0x0060001c, 0x00030c00 },
1101 },
1102 /* FSB 667MHz */{
1103 /* DDR3-1067 */ { 0, 0, 0, 0 },
1104 /* DDR3-800 */ { 0, 0, 0, 0 },
1105 /* DDR3-667 */ { 0x00000000, 0x00000000, 0x0030000c, 0x000300c0 },
1106 },
1107 };
1108
1109 const u32 *data = values_from_fsb_and_mem[fsb][ddr3clock];
1110 MCHBAR32(0x0208) = data[3];
1111 MCHBAR32(0x020c) = data[2];
1112 if (((fsb == FSB_CLOCK_1067MHz) || (fsb == FSB_CLOCK_800MHz)) && (ddr3clock == MEM_CLOCK_667MT))
1113 MCHBAR32(0x0210) = data[1];
1114
1115 static const u32 from_fsb_and_mem[][3] = {
1116 /* DDR3-1067 DDR3-800 DDR3-667 */
1117 /* FSB 1067MHz */{ 0x40100401, 0x10040220, 0x08040110, },
1118 /* FSB 800MHz */{ 0x00000000, 0x40100401, 0x00080201, },
1119 /* FSB 667MHz */{ 0x00000000, 0x00000000, 0x40100401, },
1120 };
1121 FOR_EACH_CHANNEL(ch) {
1122 const unsigned int mchbar = 0x1258 + (ch * 0x0100);
1123 if ((fsb == FSB_CLOCK_1067MHz) && (ddr3clock == MEM_CLOCK_800MT) && CHANNEL_IS_CARDF(dimms, ch))
1124 MCHBAR32(mchbar) = 0x08040120;
1125 else
1126 MCHBAR32(mchbar) = from_fsb_and_mem[fsb][ddr3clock];
1127 MCHBAR32(mchbar + 4) = 0x00000000;
1128 }
1129}
1130
Angel Pons3e33be22020-09-16 12:50:59 +02001131/* Program egress VC1 isoch timings. */
Patrick Georgi2efc8802012-11-06 11:03:53 +01001132static void vc1_program_timings(const fsb_clock_t fsb)
1133{
1134 const u32 timings_by_fsb[][2] = {
1135 /* FSB 1067MHz */ { 0x1a, 0x01380138 },
1136 /* FSB 800MHz */ { 0x14, 0x00f000f0 },
1137 /* FSB 667MHz */ { 0x10, 0x00c000c0 },
1138 };
Angel Pons3e33be22020-09-16 12:50:59 +02001139 EPBAR8(EPVC1ITC) = timings_by_fsb[fsb][0];
1140 EPBAR32(EPVC1IST + 0) = timings_by_fsb[fsb][1];
1141 EPBAR32(EPVC1IST + 4) = timings_by_fsb[fsb][1];
Patrick Georgi2efc8802012-11-06 11:03:53 +01001142}
1143
Patrick Rudolph266a1f72016-06-09 18:13:34 +02001144#define DEFAULT_PCI_MMIO_SIZE 2048
1145#define HOST_BRIDGE PCI_DEVFN(0, 0)
1146
1147static unsigned int get_mmio_size(void)
1148{
1149 const struct device *dev;
1150 const struct northbridge_intel_gm45_config *cfg = NULL;
1151
Kyösti Mälkkie7377552018-06-21 16:20:55 +03001152 dev = pcidev_path_on_root(HOST_BRIDGE);
Patrick Rudolph266a1f72016-06-09 18:13:34 +02001153 if (dev)
1154 cfg = dev->chip_info;
1155
1156 /* If this is zero, it just means devicetree.cb didn't set it */
1157 if (!cfg || cfg->pci_mmio_size == 0)
1158 return DEFAULT_PCI_MMIO_SIZE;
1159 else
1160 return cfg->pci_mmio_size;
1161}
1162
Patrick Georgi2efc8802012-11-06 11:03:53 +01001163/* @prejedec if not zero, set rank size to 128MB and page size to 4KB. */
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001164static void program_memory_map(const dimminfo_t *const dimms, const channel_mode_t mode, const int prejedec, u16 ggc)
Patrick Georgi2efc8802012-11-06 11:03:53 +01001165{
1166 int ch, r;
1167
1168 /* Program rank boundaries (CxDRBy). */
1169 unsigned int base = 0; /* start of next rank in MB */
1170 unsigned int total_mb[2] = { 0, 0 }; /* total memory per channel in MB */
1171 FOR_EACH_CHANNEL(ch) {
1172 if (mode == CHANNEL_MODE_DUAL_INTERLEAVED)
1173 /* In interleaved mode, start every channel from 0. */
1174 base = 0;
1175 for (r = 0; r < RANKS_PER_CHANNEL; r += 2) {
1176 /* Fixed capacity for pre-jedec config. */
1177 const unsigned int rank_capacity_mb =
1178 prejedec ? 128 : dimms[ch].rank_capacity_mb;
1179 u32 reg = 0;
1180
1181 /* Program bounds in CxDRBy. */
1182 IF_RANK_POPULATED(dimms, ch, r) {
1183 base += rank_capacity_mb;
1184 total_mb[ch] += rank_capacity_mb;
1185 }
1186 reg |= CxDRBy_BOUND_MB(r, base);
1187 IF_RANK_POPULATED(dimms, ch, r+1) {
1188 base += rank_capacity_mb;
1189 total_mb[ch] += rank_capacity_mb;
1190 }
1191 reg |= CxDRBy_BOUND_MB(r+1, base);
1192
1193 MCHBAR32(CxDRBy_MCHBAR(ch, r)) = reg;
1194 }
1195 }
1196
1197 /* Program page size (CxDRA). */
1198 FOR_EACH_CHANNEL(ch) {
1199 u32 reg = MCHBAR32(CxDRA_MCHBAR(ch)) & ~CxDRA_PAGESIZE_MASK;
1200 FOR_EACH_POPULATED_RANK_IN_CHANNEL(dimms, ch, r) {
1201 /* Fixed page size for pre-jedec config. */
1202 const unsigned int page_size = /* dimm page size in bytes */
1203 prejedec ? 4096 : dimms[ch].page_size;
1204 reg |= CxDRA_PAGESIZE(r, log2(page_size));
1205 /* deferred to f5_27: reg |= CxDRA_BANKS(r, dimms[ch].banks); */
1206 }
1207 MCHBAR32(CxDRA_MCHBAR(ch)) = reg;
1208 }
1209
1210 /* Calculate memory mapping, all values in MB. */
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001211
1212 u32 uma_sizem = 0;
1213 if (!prejedec) {
1214 if (!(ggc & 2)) {
1215 printk(BIOS_DEBUG, "IGD decoded, subtracting ");
1216
1217 /* Graphics memory */
1218 const u32 gms_sizek = decode_igd_memory_size((ggc >> 4) & 0xf);
1219 printk(BIOS_DEBUG, "%uM UMA", gms_sizek >> 10);
1220
1221 /* GTT Graphics Stolen Memory Size (GGMS) */
1222 const u32 gsm_sizek = decode_igd_gtt_size((ggc >> 8) & 0xf);
1223 printk(BIOS_DEBUG, " and %uM GTT\n", gsm_sizek >> 10);
1224
1225 uma_sizem = (gms_sizek + gsm_sizek) >> 10;
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001226 }
Arthur Heymansd522db02018-08-06 15:50:54 +02001227 /* TSEG 2M, This amount can easily be covered by SMRR MTRR's,
1228 which requires to have TSEG_BASE aligned to TSEG_SIZE. */
Angel Ponsb0535832020-06-08 11:46:58 +02001229 pci_update_config8(PCI_DEV(0, 0, 0), D0F0_ESMRAMC, ~0x07, (1 << 1) | (1 << 0));
Arthur Heymansd522db02018-08-06 15:50:54 +02001230 uma_sizem += 2;
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001231 }
1232
Patrick Rudolph266a1f72016-06-09 18:13:34 +02001233 const unsigned int mmio_size = get_mmio_size();
1234 const unsigned int MMIOstart = 4096 - mmio_size + uma_sizem;
Vladimir Serbinenko9907be42014-08-12 21:51:28 +02001235 const int me_active = pci_read_config8(PCI_DEV(0, 3, 0), PCI_CLASS_REVISION) != 0xff;
1236 const unsigned int ME_SIZE = prejedec || !me_active ? 0 : 32;
Patrick Georgi2efc8802012-11-06 11:03:53 +01001237 const unsigned int usedMEsize = (total_mb[0] != total_mb[1]) ? ME_SIZE : 2 * ME_SIZE;
1238 const unsigned int claimCapable =
1239 !(pci_read_config32(PCI_DEV(0, 0, 0), D0F0_CAPID0 + 4) & (1 << (47 - 32)));
1240
1241 const unsigned int TOM = total_mb[0] + total_mb[1];
1242 unsigned int TOMminusME = TOM - usedMEsize;
1243 unsigned int TOLUD = (TOMminusME < MMIOstart) ? TOMminusME : MMIOstart;
1244 unsigned int TOUUD = TOMminusME;
1245 unsigned int REMAPbase = 0xffff, REMAPlimit = 0;
1246
1247 if (claimCapable && (TOMminusME >= (MMIOstart + 64))) {
1248 /* 64MB alignment: We'll lose some MBs here, if ME is on. */
1249 TOMminusME &= ~(64 - 1);
1250 /* 64MB alignment: Loss will be reclaimed. */
1251 TOLUD &= ~(64 - 1);
1252 if (TOMminusME > 4096) {
1253 REMAPbase = TOMminusME;
1254 REMAPlimit = REMAPbase + (4096 - TOLUD);
1255 } else {
1256 REMAPbase = 4096;
1257 REMAPlimit = REMAPbase + (TOMminusME - TOLUD);
1258 }
1259 TOUUD = REMAPlimit;
1260 /* REMAPlimit is an inclusive bound, all others exclusive. */
1261 REMAPlimit -= 64;
1262 }
1263
1264 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOM, (TOM >> 7) & 0x1ff);
1265 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOLUD, TOLUD << 4);
1266 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_TOUUD, TOUUD);
1267 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_REMAPBASE, (REMAPbase >> 6) & 0x03ff);
1268 pci_write_config16(PCI_DEV(0, 0, 0), D0F0_REMAPLIMIT, (REMAPlimit >> 6) & 0x03ff);
1269
1270 /* Program channel mode. */
1271 switch (mode) {
1272 case CHANNEL_MODE_SINGLE:
1273 printk(BIOS_DEBUG, "Memory configured in single-channel mode.\n");
1274 MCHBAR32(DCC_MCHBAR) &= ~DCC_INTERLEAVED;
1275 break;
1276 case CHANNEL_MODE_DUAL_ASYNC:
Elyes HAOUASc9a717d2020-02-16 09:52:09 +01001277 printk(BIOS_DEBUG, "Memory configured in dual-channel asymmetric mode.\n");
Patrick Georgi2efc8802012-11-06 11:03:53 +01001278 MCHBAR32(DCC_MCHBAR) &= ~DCC_INTERLEAVED;
1279 break;
1280 case CHANNEL_MODE_DUAL_INTERLEAVED:
1281 printk(BIOS_DEBUG, "Memory configured in dual-channel interleaved mode.\n");
1282 MCHBAR32(DCC_MCHBAR) &= ~(DCC_NO_CHANXOR | (1 << 9));
1283 MCHBAR32(DCC_MCHBAR) |= DCC_INTERLEAVED;
1284 break;
1285 }
1286
1287 printk(BIOS_SPEW, "Memory map:\n"
1288 "TOM = %5uMB\n"
1289 "TOLUD = %5uMB\n"
1290 "TOUUD = %5uMB\n"
1291 "REMAP:\t base = %5uMB\n"
Vladimir Serbinenko9907be42014-08-12 21:51:28 +02001292 "\t limit = %5uMB\n"
1293 "usedMEsize: %dMB\n",
1294 TOM, TOLUD, TOUUD, REMAPbase, REMAPlimit, usedMEsize);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001295}
1296static void prejedec_memory_map(const dimminfo_t *const dimms, channel_mode_t mode)
1297{
1298 /* Never use dual-interleaved mode in pre-jedec config. */
1299 if (CHANNEL_MODE_DUAL_INTERLEAVED == mode)
1300 mode = CHANNEL_MODE_DUAL_ASYNC;
1301
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001302 program_memory_map(dimms, mode, 1, 0);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001303 MCHBAR32(DCC_MCHBAR) |= DCC_NO_CHANXOR;
1304}
1305
1306static void ddr3_select_clock_mux(const mem_clock_t ddr3clock,
1307 const dimminfo_t *const dimms,
1308 const stepping_t stepping)
1309{
1310 const int clk1067 = (ddr3clock == MEM_CLOCK_1067MT);
1311 const int cardF[] = { CHANNEL_IS_CARDF(dimms, 0), CHANNEL_IS_CARDF(dimms, 1) };
1312
1313 int ch;
1314
1315 if (stepping < STEPPING_B1)
1316 die("Stepping <B1 unsupported in clock-multiplexer selection.\n");
1317
1318 FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
1319 int mixed = 0;
1320 if ((1 == ch) && (!CHANNEL_IS_POPULATED(dimms, 0) || (cardF[0] != cardF[1])))
1321 mixed = 4 << 11;
1322 const unsigned int b = 0x14b0 + (ch * 0x0100);
1323 MCHBAR32(b+0x1c) = (MCHBAR32(b+0x1c) & ~(7 << 11)) |
1324 ((( cardF[ch])?1:0) << 11) | mixed;
1325 MCHBAR32(b+0x18) = (MCHBAR32(b+0x18) & ~(7 << 11)) | mixed;
1326 MCHBAR32(b+0x14) = (MCHBAR32(b+0x14) & ~(7 << 11)) |
1327 (((!clk1067 && !cardF[ch])?0:1) << 11) | mixed;
1328 MCHBAR32(b+0x10) = (MCHBAR32(b+0x10) & ~(7 << 11)) |
1329 ((( clk1067 && !cardF[ch])?1:0) << 11) | mixed;
1330 MCHBAR32(b+0x0c) = (MCHBAR32(b+0x0c) & ~(7 << 11)) |
1331 ((( cardF[ch])?3:2) << 11) | mixed;
1332 MCHBAR32(b+0x08) = (MCHBAR32(b+0x08) & ~(7 << 11)) |
1333 (2 << 11) | mixed;
1334 MCHBAR32(b+0x04) = (MCHBAR32(b+0x04) & ~(7 << 11)) |
1335 (((!clk1067 && !cardF[ch])?2:3) << 11) | mixed;
1336 MCHBAR32(b+0x00) = (MCHBAR32(b+0x00) & ~(7 << 11)) |
1337 ((( clk1067 && !cardF[ch])?3:2) << 11) | mixed;
1338 }
1339}
1340static void ddr3_write_io_init(const mem_clock_t ddr3clock,
1341 const dimminfo_t *const dimms,
1342 const stepping_t stepping,
1343 const int sff)
1344{
1345 const int a1step = stepping >= STEPPING_CONVERSION_A1;
1346 const int cardF[] = { CHANNEL_IS_CARDF(dimms, 0), CHANNEL_IS_CARDF(dimms, 1) };
1347
1348 int ch;
1349
1350 if (stepping < STEPPING_B1)
1351 die("Stepping <B1 unsupported in write i/o initialization.\n");
1352 if (sff)
1353 die("SFF platform unsupported in write i/o initialization.\n");
1354
1355 static const u32 ddr3_667_800_by_stepping_ddr3_and_card[][2][2][4] = {
1356 { /* Stepping B3 and below */
1357 { /* 667 MHz */
1358 { 0xa3255008, 0x26888209, 0x26288208, 0x6188040f },
1359 { 0x7524240b, 0xa5255608, 0x232b8508, 0x5528040f },
1360 },
1361 { /* 800 MHz */
1362 { 0xa6255308, 0x26888209, 0x212b7508, 0x6188040f },
1363 { 0x7524240b, 0xa6255708, 0x132b7508, 0x5528040f },
1364 },
1365 },
1366 { /* Conversion stepping A1 and above */
1367 { /* 667 MHz */
1368 { 0xc5257208, 0x26888209, 0x26288208, 0x6188040f },
1369 { 0x7524240b, 0xc5257608, 0x232b8508, 0x5528040f },
1370 },
1371 { /* 800 MHz */
1372 { 0xb6256308, 0x26888209, 0x212b7508, 0x6188040f },
1373 { 0x7524240b, 0xb6256708, 0x132b7508, 0x5528040f },
1374 }
1375 }};
1376
1377 static const u32 ddr3_1067_by_channel_and_card[][2][4] = {
1378 { /* Channel A */
1379 { 0xb2254708, 0x002b7408, 0x132b8008, 0x7228060f },
1380 { 0xb0255008, 0xa4254108, 0x4528b409, 0x9428230f },
1381 },
1382 { /* Channel B */
1383 { 0xa4254208, 0x022b6108, 0x132b8208, 0x9228210f },
1384 { 0x6024140b, 0x92244408, 0x252ba409, 0x9328360c },
1385 },
1386 };
1387
1388 FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
1389 if ((1 == ch) && CHANNEL_IS_POPULATED(dimms, 0) && (cardF[0] == cardF[1]))
1390 /* Only write if second channel population differs. */
1391 continue;
1392 const u32 *const data = (ddr3clock != MEM_CLOCK_1067MT)
1393 ? ddr3_667_800_by_stepping_ddr3_and_card[a1step][2 - ddr3clock][cardF[ch]]
1394 : ddr3_1067_by_channel_and_card[ch][cardF[ch]];
1395 MCHBAR32(CxWRTy_MCHBAR(ch, 0)) = data[0];
1396 MCHBAR32(CxWRTy_MCHBAR(ch, 1)) = data[1];
1397 MCHBAR32(CxWRTy_MCHBAR(ch, 2)) = data[2];
1398 MCHBAR32(CxWRTy_MCHBAR(ch, 3)) = data[3];
1399 }
1400
1401 MCHBAR32(0x1490) = 0x00e70067;
1402 MCHBAR32(0x1494) = 0x000d8000;
1403 MCHBAR32(0x1590) = 0x00e70067;
1404 MCHBAR32(0x1594) = 0x000d8000;
1405}
1406static void ddr3_read_io_init(const mem_clock_t ddr3clock,
1407 const dimminfo_t *const dimms,
1408 const int sff)
1409{
1410 int ch;
1411
1412 FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
1413 u32 addr, tmp;
1414 const unsigned int base = 0x14b0 + (ch * 0x0100);
1415 for (addr = base + 0x1c; addr >= base; addr -= 4) {
1416 tmp = MCHBAR32(addr);
1417 tmp &= ~((3 << 25) | (1 << 8) | (7 << 16) | (0xf << 20) | (1 << 27));
1418 tmp |= (1 << 27);
1419 switch (ddr3clock) {
1420 case MEM_CLOCK_667MT:
1421 tmp |= (1 << 16) | (4 << 20);
1422 break;
1423 case MEM_CLOCK_800MT:
1424 tmp |= (2 << 16) | (3 << 20);
1425 break;
1426 case MEM_CLOCK_1067MT:
1427 if (!sff)
1428 tmp |= (2 << 16) | (1 << 20);
1429 else
1430 tmp |= (2 << 16) | (2 << 20);
1431 break;
1432 default:
1433 die("Wrong clock");
1434 }
1435 MCHBAR32(addr) = tmp;
1436 }
1437 }
1438}
1439
1440static void memory_io_init(const mem_clock_t ddr3clock,
1441 const dimminfo_t *const dimms,
1442 const stepping_t stepping,
1443 const int sff)
1444{
1445 u32 tmp;
1446
1447 if (stepping < STEPPING_B1)
1448 die("Stepping <B1 unsupported in "
1449 "system-memory i/o initialization.\n");
1450
1451 tmp = MCHBAR32(0x1400);
1452 tmp &= ~(3<<13);
1453 tmp |= (1<<9) | (1<<13);
1454 MCHBAR32(0x1400) = tmp;
1455
1456 tmp = MCHBAR32(0x140c);
1457 tmp &= ~(0xff | (1<<11) | (1<<12) |
1458 (1<<16) | (1<<18) | (1<<27) | (0xf<<28));
1459 tmp |= (1<<7) | (1<<11) | (1<<16);
1460 switch (ddr3clock) {
1461 case MEM_CLOCK_667MT:
1462 tmp |= 9 << 28;
1463 break;
1464 case MEM_CLOCK_800MT:
1465 tmp |= 7 << 28;
1466 break;
1467 case MEM_CLOCK_1067MT:
1468 tmp |= 8 << 28;
1469 break;
1470 }
1471 MCHBAR32(0x140c) = tmp;
1472
1473 MCHBAR32(0x1440) &= ~1;
1474
1475 tmp = MCHBAR32(0x1414);
1476 tmp &= ~((1<<20) | (7<<11) | (0xf << 24) | (0xf << 16));
1477 tmp |= (3<<11);
1478 switch (ddr3clock) {
1479 case MEM_CLOCK_667MT:
1480 tmp |= (2 << 24) | (10 << 16);
1481 break;
1482 case MEM_CLOCK_800MT:
1483 tmp |= (3 << 24) | (7 << 16);
1484 break;
1485 case MEM_CLOCK_1067MT:
1486 tmp |= (4 << 24) | (4 << 16);
1487 break;
1488 }
1489 MCHBAR32(0x1414) = tmp;
1490
1491 MCHBAR32(0x1418) &= ~((1<<3) | (1<<11) | (1<<19) | (1<<27));
1492
1493 MCHBAR32(0x141c) &= ~((1<<3) | (1<<11) | (1<<19) | (1<<27));
1494
1495 MCHBAR32(0x1428) |= 1<<14;
1496
1497 tmp = MCHBAR32(0x142c);
1498 tmp &= ~((0xf << 8) | (0x7 << 20) | 0xf | (0xf << 24));
1499 tmp |= (0x3 << 20) | (5 << 24);
1500 switch (ddr3clock) {
1501 case MEM_CLOCK_667MT:
1502 tmp |= (2 << 8) | 0xc;
1503 break;
1504 case MEM_CLOCK_800MT:
1505 tmp |= (3 << 8) | 0xa;
1506 break;
1507 case MEM_CLOCK_1067MT:
1508 tmp |= (4 << 8) | 0x7;
1509 break;
1510 }
1511 MCHBAR32(0x142c) = tmp;
1512
1513 tmp = MCHBAR32(0x400);
1514 tmp &= ~((3 << 4) | (3 << 16) | (3 << 30));
1515 tmp |= (2 << 4) | (2 << 16);
1516 MCHBAR32(0x400) = tmp;
1517
1518 MCHBAR32(0x404) &= ~(0xf << 20);
1519
1520 MCHBAR32(0x40c) &= ~(1 << 6);
1521
1522 tmp = MCHBAR32(0x410);
1523 tmp &= ~(7 << 28);
1524 tmp |= 2 << 28;
1525 MCHBAR32(0x410) = tmp;
1526
1527 tmp = MCHBAR32(0x41c);
1528 tmp &= ~0x77;
1529 tmp |= 0x11;
1530 MCHBAR32(0x41c) = tmp;
1531
1532 ddr3_select_clock_mux(ddr3clock, dimms, stepping);
1533
1534 ddr3_write_io_init(ddr3clock, dimms, stepping, sff);
1535
1536 ddr3_read_io_init(ddr3clock, dimms, sff);
1537}
1538
1539static void jedec_init(const timings_t *const timings,
1540 const dimminfo_t *const dimms)
1541{
1542 if ((timings->tWR < 5) || (timings->tWR > 12))
1543 die("tWR value unsupported in Jedec initialization.\n");
1544
1545 /* Pre-jedec settings */
1546 MCHBAR32(0x40) |= (1 << 1);
1547 MCHBAR32(0x230) |= (3 << 1);
1548 MCHBAR32(0x238) |= (3 << 24);
1549 MCHBAR32(0x23c) |= (3 << 24);
1550
1551 /* Normal write pointer operation */
1552 MCHBAR32(0x14f0) |= (1 << 9);
1553 MCHBAR32(0x15f0) |= (1 << 9);
1554
1555 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_CMD_MASK) | DCC_CMD_NOP;
1556
Angel Ponsb0535832020-06-08 11:46:58 +02001557 pci_and_config8(PCI_DEV(0, 0, 0), 0xf0, ~(1 << 2));
1558
1559 pci_or_config8(PCI_DEV(0, 0, 0), 0xf0, 1 << 2);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001560 udelay(2);
1561
1562 /* 5 6 7 8 9 10 11 12 */
1563 static const u8 wr_lut[] = { 1, 2, 3, 4, 5, 5, 6, 6 };
1564
1565 const int WL = ((timings->tWL - 5) & 7) << 6;
1566 const int ODT_120OHMS = (1 << 9);
1567 const int ODS_34OHMS = (1 << 4);
1568 const int WR = (wr_lut[timings->tWR - 5] & 7) << 12;
1569 const int DLL1 = 1 << 11;
1570 const int CAS = ((timings->CAS - 4) & 7) << 7;
1571 const int INTERLEAVED = 1 << 6;/* This is READ Burst Type == interleaved. */
1572
1573 int ch, r;
1574 FOR_EACH_POPULATED_RANK(dimms, ch, r) {
1575 /* We won't do this in dual-interleaved mode,
Felix Held7f9f3d02019-06-07 14:47:28 +02001576 so don't care about the offset.
1577 Mirrored ranks aren't taken into account here. */
Patrick Georgi2efc8802012-11-06 11:03:53 +01001578 const u32 rankaddr = raminit_get_rank_addr(ch, r);
Nico Huber0624f922017-04-15 15:57:28 +02001579 printk(BIOS_DEBUG, "JEDEC init @0x%08x\n", rankaddr);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001580 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_SET_EREG_MASK) | DCC_SET_EREGx(2);
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001581 read32((u32 *)(rankaddr | WL));
Patrick Georgi2efc8802012-11-06 11:03:53 +01001582 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_SET_EREG_MASK) | DCC_SET_EREGx(3);
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001583 read32((u32 *)rankaddr);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001584 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_SET_EREG_MASK) | DCC_SET_EREGx(1);
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001585 read32((u32 *)(rankaddr | ODT_120OHMS | ODS_34OHMS));
Patrick Georgi2efc8802012-11-06 11:03:53 +01001586 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_CMD_MASK) | DCC_SET_MREG;
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001587 read32((u32 *)(rankaddr | WR | DLL1 | CAS | INTERLEAVED));
Patrick Georgi2efc8802012-11-06 11:03:53 +01001588 MCHBAR32(DCC_MCHBAR) = (MCHBAR32(DCC_MCHBAR) & ~DCC_CMD_MASK) | DCC_SET_MREG;
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001589 read32((u32 *)(rankaddr | WR | CAS | INTERLEAVED));
Patrick Georgi2efc8802012-11-06 11:03:53 +01001590 }
1591}
1592
1593static void ddr3_calibrate_zq(void) {
1594 udelay(2);
1595
1596 u32 tmp = MCHBAR32(DCC_MCHBAR);
1597 tmp &= ~(7 << 16);
1598 tmp |= (5 << 16); /* ZQ calibration mode */
1599 MCHBAR32(DCC_MCHBAR) = tmp;
1600
1601 MCHBAR32(CxDRT6_MCHBAR(0)) |= (1 << 3);
1602 MCHBAR32(CxDRT6_MCHBAR(1)) |= (1 << 3);
1603
1604 udelay(1);
1605
1606 MCHBAR32(CxDRT6_MCHBAR(0)) &= ~(1 << 3);
1607 MCHBAR32(CxDRT6_MCHBAR(1)) &= ~(1 << 3);
1608
1609 MCHBAR32(DCC_MCHBAR) |= (7 << 16); /* Normal operation */
1610}
1611
1612static void post_jedec_sequence(const int cores) {
1613 const int quadcore = cores == 4;
1614
1615 MCHBAR32(0x0040) &= ~(1 << 1);
1616 MCHBAR32(0x0230) &= ~(3 << 1);
1617 MCHBAR32(0x0230) |= 1 << 15;
1618 MCHBAR32(0x0230) &= ~(1 << 19);
1619 MCHBAR32(0x1250) = 0x6c4;
1620 MCHBAR32(0x1350) = 0x6c4;
1621 MCHBAR32(0x1254) = 0x871a066d;
1622 MCHBAR32(0x1354) = 0x871a066d;
1623 MCHBAR32(0x0238) |= 1 << 26;
1624 MCHBAR32(0x0238) &= ~(3 << 24);
1625 MCHBAR32(0x0238) |= 1 << 23;
1626 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 20)) | (3 << 20);
1627 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 17)) | (6 << 17);
1628 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 14)) | (6 << 14);
1629 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 11)) | (6 << 11);
1630 MCHBAR32(0x0238) = (MCHBAR32(0x238) & ~(7 << 8)) | (6 << 8);
1631 MCHBAR32(0x023c) &= ~(3 << 24);
1632 MCHBAR32(0x023c) &= ~(1 << 23);
1633 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 20)) | (3 << 20);
1634 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 17)) | (6 << 17);
1635 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 14)) | (6 << 14);
1636 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 11)) | (6 << 11);
1637 MCHBAR32(0x023c) = (MCHBAR32(0x23c) & ~(7 << 8)) | (6 << 8);
1638
1639 if (quadcore) {
1640 MCHBAR32(0xb14) |= (0xbfbf << 16);
1641 }
1642}
1643
1644static void dram_optimizations(const timings_t *const timings,
1645 const dimminfo_t *const dimms)
1646{
1647 int ch;
1648
1649 FOR_EACH_POPULATED_CHANNEL(dimms, ch) {
1650 const unsigned int mchbar = CxDRC1_MCHBAR(ch);
1651 u32 cxdrc1 = MCHBAR32(mchbar);
1652 cxdrc1 &= ~CxDRC1_SSDS_MASK;
1653 if (dimms[ch].ranks == 1)
1654 cxdrc1 |= CxDRC1_SS;
1655 else
1656 cxdrc1 |= CxDRC1_DS;
1657 MCHBAR32(mchbar) = cxdrc1;
1658 }
1659}
1660
1661u32 raminit_get_rank_addr(unsigned int channel, unsigned int rank)
1662{
1663 if (!channel && !rank)
1664 return 0; /* Address of first rank */
1665
1666 /* Read the bound of the previous rank. */
1667 if (rank > 0) {
1668 rank--;
1669 } else {
1670 rank = 3; /* Highest rank per channel */
1671 channel--;
1672 }
1673 const u32 reg = MCHBAR32(CxDRBy_MCHBAR(channel, rank));
1674 /* Bound is in 32MB. */
1675 return ((reg & CxDRBy_BOUND_MASK(rank)) >> CxDRBy_BOUND_SHIFT(rank)) << 25;
1676}
1677
1678void raminit_reset_readwrite_pointers(void) {
1679 MCHBAR32(0x1234) |= (1 << 6);
1680 MCHBAR32(0x1234) &= ~(1 << 6);
1681 MCHBAR32(0x1334) |= (1 << 6);
1682 MCHBAR32(0x1334) &= ~(1 << 6);
1683 MCHBAR32(0x14f0) &= ~(1 << 9);
1684 MCHBAR32(0x14f0) |= (1 << 9);
1685 MCHBAR32(0x14f0) |= (1 << 10);
1686 MCHBAR32(0x15f0) &= ~(1 << 9);
1687 MCHBAR32(0x15f0) |= (1 << 9);
1688 MCHBAR32(0x15f0) |= (1 << 10);
1689}
1690
1691void raminit(sysinfo_t *const sysinfo, const int s3resume)
1692{
1693 const dimminfo_t *const dimms = sysinfo->dimms;
1694 const timings_t *const timings = &sysinfo->selected_timings;
Patrick Georgi2efc8802012-11-06 11:03:53 +01001695
1696 int ch;
Patrick Georgi2efc8802012-11-06 11:03:53 +01001697
Arthur Heymans049347f2017-05-12 11:54:08 +02001698 timestamp_add_now(TS_BEFORE_INITRAM);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001699
1700 /* Wait for some bit, maybe TXT clear. */
1701 if (sysinfo->txt_enabled) {
Kevin Paul Herbertbde6d302014-12-24 18:43:20 -08001702 while (!(read8((u8 *)0xfed40000) & (1 << 7))) {}
Patrick Georgi2efc8802012-11-06 11:03:53 +01001703 }
1704
Patrick Georgi2efc8802012-11-06 11:03:53 +01001705 /* Collect information about DIMMs and find common settings. */
1706 collect_dimm_config(sysinfo);
1707
1708 /* Check for bad warm boot. */
1709 reset_on_bad_warmboot();
1710
Patrick Georgi2efc8802012-11-06 11:03:53 +01001711 /***** From now on, program according to collected infos: *****/
1712
1713 /* Program DRAM type. */
1714 switch (sysinfo->spd_type) {
1715 case DDR2:
1716 MCHBAR8(0x1434) |= (1 << 7);
1717 break;
1718 case DDR3:
1719 MCHBAR8(0x1434) |= (3 << 0);
1720 break;
1721 }
1722
1723 /* Program system memory frequency. */
1724 set_system_memory_frequency(timings);
1725 /* Program IGD memory frequency. */
1726 set_igd_memory_frequencies(sysinfo);
1727
1728 /* Configure DRAM control mode for populated channels. */
1729 configure_dram_control_mode(timings, dimms);
1730
1731 /* Initialize RCOMP. */
Nico Huber5aaeb272015-12-30 00:17:27 +01001732 rcomp_initialization(sysinfo->stepping, sysinfo->sff);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001733
1734 /* Power-up DRAM. */
1735 dram_powerup(s3resume);
1736 /* Program DRAM timings. */
1737 dram_program_timings(timings);
1738 /* Program number of banks. */
1739 dram_program_banks(dimms);
1740 /* Enable DRAM clock pairs for populated DIMMs. */
1741 FOR_EACH_POPULATED_CHANNEL(dimms, ch)
1742 MCHBAR32(CxDCLKDIS_MCHBAR(ch)) |= CxDCLKDIS_ENABLE;
1743
1744 /* Enable On-Die Termination. */
Nico Huber5aaeb272015-12-30 00:17:27 +01001745 odt_setup(timings, sysinfo->sff);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001746 /* Miscellaneous settings. */
1747 misc_settings(timings, sysinfo->stepping);
1748 /* Program clock crossing registers. */
1749 clock_crossing_setup(timings->fsb_clock, timings->mem_clock, dimms);
1750 /* Program egress VC1 timings. */
1751 vc1_program_timings(timings->fsb_clock);
1752 /* Perform system-memory i/o initialization. */
Nico Huber5aaeb272015-12-30 00:17:27 +01001753 memory_io_init(timings->mem_clock, dimms,
1754 sysinfo->stepping, sysinfo->sff);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001755
1756 /* Initialize memory map with dummy values of 128MB per rank with a
1757 page size of 4KB. This makes the JEDEC initialization code easier. */
1758 prejedec_memory_map(dimms, timings->channel_mode);
1759 if (!s3resume)
1760 /* Perform JEDEC initialization of DIMMS. */
1761 jedec_init(timings, dimms);
1762 /* Some programming steps after JEDEC initialization. */
1763 post_jedec_sequence(sysinfo->cores);
1764
1765 /* Announce normal operation, initialization completed. */
1766 MCHBAR32(DCC_MCHBAR) |= (0x7 << 16) | (0x1 << 19);
Angel Ponsb0535832020-06-08 11:46:58 +02001767
1768 pci_or_config8(PCI_DEV(0, 0, 0), 0xf0, 1 << 2);
1769
1770 pci_and_config8(PCI_DEV(0, 0, 0), 0xf0, ~(1 << 2));
Patrick Georgi2efc8802012-11-06 11:03:53 +01001771
Patrick Georgi2efc8802012-11-06 11:03:53 +01001772 /* Take a breath (the reader). */
1773
Patrick Georgi2efc8802012-11-06 11:03:53 +01001774 /* Perform ZQ calibration for DDR3. */
Nico Huber4a86b3b2019-08-11 16:28:05 +02001775 if (sysinfo->spd_type == DDR3)
1776 ddr3_calibrate_zq();
Patrick Georgi2efc8802012-11-06 11:03:53 +01001777
1778 /* Perform receive-enable calibration. */
1779 raminit_receive_enable_calibration(timings, dimms);
1780 /* Lend clock values from receive-enable calibration. */
Jonathan Neuschäfer2f828eb2018-02-12 12:00:44 +01001781 MCHBAR32(CxDRT5_MCHBAR(0)) =
1782 (MCHBAR32(CxDRT5_MCHBAR(0)) & ~(0xf0)) |
1783 ((((MCHBAR32(CxDRT3_MCHBAR(0)) >> 7) - 1) & 0xf) << 4);
1784 MCHBAR32(CxDRT5_MCHBAR(1)) =
1785 (MCHBAR32(CxDRT5_MCHBAR(1)) & ~(0xf0)) |
1786 ((((MCHBAR32(CxDRT3_MCHBAR(1)) >> 7) - 1) & 0xf) << 4);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001787
1788 /* Perform read/write training for high clock rate. */
1789 if (timings->mem_clock == MEM_CLOCK_1067MT) {
1790 raminit_read_training(dimms, s3resume);
1791 raminit_write_training(timings->mem_clock, dimms, s3resume);
1792 }
1793
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001794 igd_compute_ggc(sysinfo);
1795
Patrick Georgi2efc8802012-11-06 11:03:53 +01001796 /* Program final memory map (with real values). */
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001797 program_memory_map(dimms, timings->channel_mode, 0, sysinfo->ggc);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001798
1799 /* Some last optimizations. */
1800 dram_optimizations(timings, dimms);
1801
Elyes HAOUAS3d450002018-08-09 18:55:58 +02001802 /* Mark raminit being finished. :-) */
Angel Ponsb0535832020-06-08 11:46:58 +02001803 pci_and_config8(PCI_DEV(0, 0x1f, 0), 0xa2, (u8)~(1 << 7));
Vladimir Serbinenko56ae8a02014-08-16 10:59:02 +02001804
1805 raminit_thermal(sysinfo);
1806 init_igd(sysinfo);
Arthur Heymans049347f2017-05-12 11:54:08 +02001807
1808 timestamp_add_now(TS_AFTER_INITRAM);
Patrick Georgi2efc8802012-11-06 11:03:53 +01001809}