blob: 8d75c4218965cce690fd9a0fed4a4a12524d93e2 [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2008-2010 Joseph Smith <joe@settoplinux.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#include <spd.h>
#include <delay.h>
#include "lib/debug.c"
#include "i82830.h"
/*-----------------------------------------------------------------------------
Macros and definitions.
-----------------------------------------------------------------------------*/
/* Debugging macros. */
#if CONFIG_DEBUG_RAM_SETUP
#define PRINTK_DEBUG(x...) printk(BIOS_DEBUG, x)
#define DUMPNORTH() dump_pci_device(PCI_DEV(0, 0, 0))
#else
#define PRINTK_DEBUG(x...)
#define DUMPNORTH()
#endif
/* DRC[10:8] - Refresh Mode Select (RMS).
* 0x0 for Refresh Disabled (Self Refresh)
* 0x1 for Refresh interval 15.6 us for 133MHz
* 0x2 for Refresh interval 7.8 us for 133MHz
* 0x7 for Refresh interval 128 Clocks. (Fast Refresh Mode)
*/
#define RAM_COMMAND_REFRESH 0x1
/* DRC[6:4] - SDRAM Mode Select (SMS). */
#define RAM_COMMAND_SELF_REFRESH 0x0
#define RAM_COMMAND_NOP 0x1
#define RAM_COMMAND_PRECHARGE 0x2
#define RAM_COMMAND_MRS 0x3
#define RAM_COMMAND_CBR 0x6
#define RAM_COMMAND_NORMAL 0x7
/* DRC[29] - Initialization Complete (IC). */
#define RAM_COMMAND_IC 0x1
/*-----------------------------------------------------------------------------
DIMM-initialization functions.
-----------------------------------------------------------------------------*/
static void do_ram_command(u32 command)
{
u32 reg32;
/* Configure the RAM command. */
reg32 = pci_read_config32(NORTHBRIDGE, DRC);
/* Clear bits 29, 10-8, 6-4. */
reg32 &= 0xdffff88f;
reg32 |= command << 4;
PRINTK_DEBUG(" Sending RAM command 0x%08x", reg32);
pci_write_config32(NORTHBRIDGE, DRC, reg32);
}
static void ram_read32(u8 dimm_start, u32 offset)
{
u32 reg32, base_addr = 32 * 1024 * 1024 * dimm_start;
if (offset == 0x55aa55aa) {
reg32 = read32(base_addr);
PRINTK_DEBUG(" Reading RAM at 0x%08x => 0x%08x\n", base_addr, reg32);
PRINTK_DEBUG(" Writing RAM at 0x%08x <= 0x%08x\n", base_addr, offset);
write32(base_addr, offset);
reg32 = read32(base_addr);
PRINTK_DEBUG(" Reading RAM at 0x%08x => 0x%08x\n", base_addr, reg32);
} else {
PRINTK_DEBUG(" to 0x%08x\n", base_addr + offset);
read32(base_addr + offset);
}
}
static void initialize_dimm_rows(void)
{
int i, row;
u8 dimm_start, dimm_end;
unsigned device;
dimm_start = 0;
for (row = 0; row < (DIMM_SOCKETS * 2); row++) {
switch (row) {
case 0:
device = DIMM_SPD_BASE;
break;
case 1:
device = DIMM_SPD_BASE;
break;
case 2:
device = DIMM_SPD_BASE + 1;
break;
case 3:
device = DIMM_SPD_BASE + 1;
break;
}
dimm_end = pci_read_config8(NORTHBRIDGE, DRB + row);
if (dimm_end > dimm_start) {
printk(BIOS_DEBUG, "Initializing SDRAM Row %u\n", row);
/* NOP command */
PRINTK_DEBUG(" NOP\n");
do_ram_command(RAM_COMMAND_NOP);
ram_read32(dimm_start, 0);
udelay(200);
/* Pre-charge all banks (at least 200 us after NOP) */
PRINTK_DEBUG(" Pre-charging all banks\n");
do_ram_command(RAM_COMMAND_PRECHARGE);
ram_read32(dimm_start, 0);
udelay(1);
/* 8 CBR refreshes (Auto Refresh) */
PRINTK_DEBUG(" 8 CBR refreshes\n");
for (i = 0; i < 8; i++) {
do_ram_command(RAM_COMMAND_CBR);
ram_read32(dimm_start, 0);
udelay(1);
}
/* MRS command */
/* TODO: Set offset 0x1d0 according to DRT values */
PRINTK_DEBUG(" MRS\n");
do_ram_command(RAM_COMMAND_MRS);
ram_read32(dimm_start, 0x1d0);
udelay(2);
/* Set GMCH-M Mode Select bits back to NORMAL operation mode */
PRINTK_DEBUG(" Normal operation mode\n");
do_ram_command(RAM_COMMAND_NORMAL);
ram_read32(dimm_start, 0);
udelay(1);
/* Perform a dummy memory read/write cycle */
PRINTK_DEBUG(" Performing dummy read/write\n");
ram_read32(dimm_start, 0x55aa55aa);
udelay(1);
}
/* Set the start of the next DIMM. */
dimm_start = dimm_end;
}
}
/*-----------------------------------------------------------------------------
DIMM-independant configuration functions.
-----------------------------------------------------------------------------*/
struct dimm_size {
unsigned int side1;
unsigned int side2;
};
static struct dimm_size spd_get_dimm_size(unsigned device)
{
struct dimm_size sz;
int i, module_density, dimm_banks;
sz.side1 = 0;
module_density = spd_read_byte(device, SPD_DENSITY_OF_EACH_ROW_ON_MODULE);
dimm_banks = spd_read_byte(device, SPD_NUM_DIMM_BANKS);
/* Find the size of side1. */
/* Find the larger value. The larger value is always side1. */
for (i = 512; i >= 0; i >>= 1) {
if ((module_density & i) == i) {
sz.side1 = i;
break;
}
}
/* Set to 0 in case it's single sided. */
sz.side2 = 0;
/* Test if it's a dual-sided DIMM. */
if (dimm_banks > 1) {
/* Test to see if there's a second value, if so it's asymmetrical. */
if (module_density != i) {
/* Find the second value, picking up where we left off. */
/* i >>= 1 done initially to make sure we don't get the same value again. */
for (i >>= 1; i >= 0; i >>= 1) {
if (module_density == (sz.side1 | i)) {
sz.side2 = i;
break;
}
}
/* If not, it's symmetrical */
} else {
sz.side2 = sz.side1;
}
}
/* SPD byte 31 is the memory size divided by 4 so we
* need to muliply by 4 to get the total size.
*/
sz.side1 *= 4;
sz.side2 *= 4;
return sz;
}
static void set_dram_row_boundaries(void)
{
int i, value, drb1, drb2;
for (i = 0; i < DIMM_SOCKETS; i++) {
struct dimm_size sz;
unsigned device;
device = DIMM_SPD_BASE + i;
drb1 = 0;
drb2 = 0;
/* First check if a DIMM is actually present. */
if (spd_read_byte(device, SPD_MEMORY_TYPE) == 0x4) {
printk(BIOS_DEBUG, "Found DIMM in slot %u\n", i);
sz = spd_get_dimm_size(device);
printk(BIOS_DEBUG, " DIMM is %uMB on side 1\n", sz.side1);
printk(BIOS_DEBUG, " DIMM is %uMB on side 2\n", sz.side2);
/* - Memory compatibility checks - */
/* Test for PC133 (i82830 only supports PC133) */
/* PC133 SPD9 - cycle time is always 75 */
if (spd_read_byte(device, SPD_MIN_CYCLE_TIME_AT_CAS_MAX) != 0x75) {
printk(BIOS_ERR, "SPD9 DIMM Is Not PC133 Compatable\n");
die("HALT\n");
}
/* PC133 SPD10 - access time is always 54 */
if (spd_read_byte(device, SPD_ACCESS_TIME_FROM_CLOCK) != 0x54) {
printk(BIOS_ERR, "SPD10 DIMM Is Not PC133 Compatable\n");
die("HALT\n");
}
/* The i82830 only supports a symmetrical dual-sided dimms
* and can't handle DIMMs smaller than 32MB per
* side or larger than 256MB per side.
*/
if ((sz.side2 != 0) && (sz.side1 != sz.side2)) {
printk(BIOS_ERR, "This northbridge only supports\n");
printk(BIOS_ERR, "symmetrical dual-sided DIMMs\n");
printk(BIOS_ERR, "booting as a single-sided DIMM\n");
sz.side2 = 0;
}
if ((sz.side1 < 32)) {
printk(BIOS_ERR, "DIMMs smaller than 32MB per side\n");
printk(BIOS_ERR, "are not supported on this northbridge\n");
die("HALT\n");
}
if ((sz.side1 > 256)) {
printk(BIOS_ERR, "DIMMs larger than 256MB per side\n");
printk(BIOS_ERR, "are not supported on this northbridge\n");
die("HALT\n");
}
/* - End Memory compatibility checks - */
/* We need to divide size by 32 to set up the
* DRB registers.
*/
if (sz.side1)
drb1 = sz.side1 / 32;
if (sz.side2)
drb2 = sz.side2 / 32;
} else {
printk(BIOS_DEBUG, "No DIMM found in slot %u\n", i);
/* If there's no DIMM in the slot, set value to 0. */
drb1 = 0;
drb2 = 0;
}
/* Set the value for DRAM Row Boundary Registers */
if (i == 0) {
pci_write_config8(NORTHBRIDGE, DRB, drb1);
pci_write_config8(NORTHBRIDGE, DRB + 1, drb1 + drb2);
PRINTK_DEBUG(" DRB 0x%02x has been set to 0x%02x\n", DRB, drb1);
PRINTK_DEBUG(" DRB1 0x%02x has been set to 0x%02x\n", DRB + 1, drb1 + drb2);
} else if (i == 1) {
value = pci_read_config8(NORTHBRIDGE, DRB + 1);
pci_write_config8(NORTHBRIDGE, DRB + 2, value + drb1);
pci_write_config8(NORTHBRIDGE, DRB + 3, value + drb1 + drb2);
PRINTK_DEBUG(" DRB2 0x%02x has been set to 0x%02x\n", DRB + 2, value + drb1);
PRINTK_DEBUG(" DRB3 0x%02x has been set to 0x%02x\n", DRB + 3, value + drb1 + drb2);
/* We need to set the highest DRB value to 0x64 and 0x65.
* These are supposed to be "Reserved" but memory will
* not initialize properly if we don't.
*/
value = pci_read_config8(NORTHBRIDGE, DRB + 3);
pci_write_config8(NORTHBRIDGE, DRB + 4, value);
pci_write_config8(NORTHBRIDGE, DRB + 5, value);
}
}
}
static void set_dram_row_attributes(void)
{
int i, dra, col, width, value;
for (i = 0; i < DIMM_SOCKETS; i++) {
unsigned device;
device = DIMM_SPD_BASE + i;
/* First check if a DIMM is actually present. */
if (spd_read_byte(device, SPD_MEMORY_TYPE) == 0x4) {
PRINTK_DEBUG("Found DIMM in slot %u\n", i);
dra = 0x00;
/* columns */
col = spd_read_byte(device, SPD_NUM_COLUMNS);
/* data width */
width = spd_read_byte(device, SPD_MODULE_DATA_WIDTH_LSB);
/* calculate page size in bits */
value = ((1 << col) * width);
/* convert to Kilobytes */
dra = ((value / 8) >> 10);
/* # of banks of DIMM (single or double sided) */
value = spd_read_byte(device, SPD_NUM_DIMM_BANKS);
if (value == 1) {
if (dra == 2) {
dra = 0xF0; /* 2KB */
} else if (dra == 4) {
dra = 0xF1; /* 4KB */
} else if (dra == 8) {
dra = 0xF2; /* 8KB */
} else if (dra == 16) {
dra = 0xF3; /* 16KB */
} else {
printk(BIOS_ERR, "Page size not supported\n");
die("HALT\n");
}
} else if (value == 2) {
if (dra == 2) {
dra = 0x00; /* 2KB */
} else if (dra == 4) {
dra = 0x11; /* 4KB */
} else if (dra == 8) {
dra = 0x22; /* 8KB */
} else if (dra == 16) {
dra = 0x33; /* 16KB */
} else {
printk(BIOS_ERR, "Page size not supported\n");
die("HALT\n");
}
} else {
printk(BIOS_ERR, "# of banks of DIMM not supported\n");
die("HALT\n");
}
} else {
PRINTK_DEBUG("No DIMM found in slot %u\n", i);
/* If there's no DIMM in the slot, set dra value to 0xFF. */
dra = 0xFF;
}
/* Set the value for DRAM Row Attribute Registers */
pci_write_config8(NORTHBRIDGE, DRA + i, dra);
PRINTK_DEBUG(" DRA 0x%02x has been set to 0x%02x\n", DRA + i, dra);
}
}
static void set_dram_timing(void)
{
/* Set the value for DRAM Timing Register */
/* TODO: Configure the value according to SPD values. */
pci_write_config32(NORTHBRIDGE, DRT, 0x00000010);
}
static void set_dram_buffer_strength(void)
{
/* TODO: This needs to be set according to the DRAM tech
* (x8, x16, or x32). Argh, Intel provides no docs on this!
* Currently, it needs to be pulled from the output of
* lspci -xxx Rx92
*/
/* Set the value for System Memory Buffer Strength Control Registers */
pci_write_config32(NORTHBRIDGE, BUFF_SC, 0xFC9B491B);
}
/*-----------------------------------------------------------------------------
Public interface.
-----------------------------------------------------------------------------*/
static void sdram_set_registers(void)
{
printk(BIOS_DEBUG, "Setting initial SDRAM registers....\n");
/* Calculate the value for DRT DRAM Timing Register */
set_dram_timing();
/* Setup System Memory Buffer Strength Control Registers */
set_dram_buffer_strength();
/* Setup DRAM Row Boundary Registers */
set_dram_row_boundaries();
/* Setup DRAM Row Attribute Registers */
set_dram_row_attributes();
printk(BIOS_DEBUG, "Initial SDRAM registers have been set.\n");
}
static void northbridge_set_registers(void)
{
u16 value;
int igd_memory = 0;
printk(BIOS_DEBUG, "Setting initial Nothbridge registers....\n");
/* Set the value for Fixed DRAM Hole Control Register */
pci_write_config8(NORTHBRIDGE, FDHC, 0x00);
/* Set the value for Programable Attribute Map Registers
* Ideally, this should be R/W for as many ranges as possible.
*/
pci_write_config8(NORTHBRIDGE, PAM0, 0x30);
pci_write_config8(NORTHBRIDGE, PAM1, 0x33);
pci_write_config8(NORTHBRIDGE, PAM2, 0x33);
pci_write_config8(NORTHBRIDGE, PAM3, 0x33);
pci_write_config8(NORTHBRIDGE, PAM4, 0x33);
pci_write_config8(NORTHBRIDGE, PAM5, 0x33);
pci_write_config8(NORTHBRIDGE, PAM6, 0x33);
/* Set the value for System Management RAM Control Register */
pci_write_config8(NORTHBRIDGE, SMRAM, 0x02);
/* Set the value for GMCH Control Register #0 */
pci_write_config16(NORTHBRIDGE, GCC0, 0xA072);
/* Set the value for Aperture Base Configuration Register */
pci_write_config32(NORTHBRIDGE, APBASE, 0x00000008);
/* Set the value for GMCH Control Register #1 */
switch (CONFIG_VIDEO_MB) {
case 512: /* 512K of memory */
igd_memory = 0x2;
break;
case 1: /* 1M of memory */
igd_memory = 0x3;
break;
case 8: /* 8M of memory */
igd_memory = 0x4;
break;
default: /* No memory */
pci_write_config16(NORTHBRIDGE, GCC1, 0x0002);
igd_memory = 0x0;
}
value = pci_read_config16(NORTHBRIDGE, GCC1);
value |= igd_memory << 4;
value |= 1; // 64MB aperture
pci_write_config16(NORTHBRIDGE, GCC1, value);
printk(BIOS_DEBUG, "Initial Northbridge registers have been set.\n");
}
static void sdram_initialize(void)
{
u32 reg32;
/* Setup Initial SDRAM Registers */
sdram_set_registers();
/* Wait until power/voltages and clocks are stable (200us). */
udelay(200);
/* Initialize each row of memory one at a time */
initialize_dimm_rows();
/* Enable Refresh */
PRINTK_DEBUG("Enabling Refresh\n");
reg32 = pci_read_config32(NORTHBRIDGE, DRC);
reg32 |= (RAM_COMMAND_REFRESH << 8);
pci_write_config32(NORTHBRIDGE, DRC, reg32);
/* Set initialization complete */
PRINTK_DEBUG("Setting initialization complete\n");
reg32 = pci_read_config32(NORTHBRIDGE, DRC);
reg32 |= (RAM_COMMAND_IC << 29);
pci_write_config32(NORTHBRIDGE, DRC, reg32);
/* Setup Initial Northbridge Registers */
northbridge_set_registers();
PRINTK_DEBUG("Northbridge following SDRAM init:\n");
DUMPNORTH();
}