| /* |
| 2005.12 yhlu add coreboot_ram cross the vga font buffer handling |
| 2005.12 yhlu add CONFIG_RAMBASE above 1M support for SMP |
| 2008.05 stepan add support for going back to sipi wait state |
| */ |
| |
| #include <cpu/x86/lapic.h> |
| #include <delay.h> |
| #include <string.h> |
| #include <console/console.h> |
| #include <arch/hlt.h> |
| #include <device/device.h> |
| #include <device/path.h> |
| #include <smp/atomic.h> |
| #include <smp/spinlock.h> |
| #include <cpu/cpu.h> |
| |
| #if CONFIG_SMP == 1 |
| |
| #if CONFIG_RAMBASE >= 0x100000 |
| /* This is a lot more paranoid now, since Linux can NOT handle |
| * being told there is a CPU when none exists. So any errors |
| * will return 0, meaning no CPU. |
| * |
| * We actually handling that case by noting which cpus startup |
| * and not telling anyone about the ones that dont. |
| */ |
| static unsigned long get_valid_start_eip(unsigned long orig_start_eip) |
| { |
| return (unsigned long)orig_start_eip & 0xffff; // 16 bit to avoid 0xa0000 |
| } |
| #endif |
| |
| #if CONFIG_HAVE_ACPI_RESUME == 1 |
| char *lowmem_backup; |
| char *lowmem_backup_ptr; |
| int lowmem_backup_size; |
| #endif |
| |
| extern char _secondary_start[]; |
| |
| static void copy_secondary_start_to_1m_below(void) |
| { |
| #if CONFIG_RAMBASE >= 0x100000 |
| extern char _secondary_start_end[]; |
| unsigned long code_size; |
| unsigned long start_eip; |
| |
| /* _secondary_start need to be masked 20 above bit, because 16 bit code in secondary.S |
| Also We need to copy the _secondary_start to the below 1M region |
| */ |
| start_eip = get_valid_start_eip((unsigned long)_secondary_start); |
| code_size = (unsigned long)_secondary_start_end - (unsigned long)_secondary_start; |
| |
| #if CONFIG_HAVE_ACPI_RESUME == 1 |
| /* need to save it for RAM resume */ |
| lowmem_backup_size = code_size; |
| lowmem_backup = malloc(code_size); |
| lowmem_backup_ptr = (char *)start_eip; |
| |
| if (lowmem_backup == NULL) |
| die("Out of backup memory\n"); |
| |
| memcpy(lowmem_backup, lowmem_backup_ptr, lowmem_backup_size); |
| #endif |
| /* copy the _secondary_start to the ram below 1M*/ |
| memcpy((unsigned char *)start_eip, (unsigned char *)_secondary_start, code_size); |
| |
| printk_debug("start_eip=0x%08lx, offset=0x%08lx, code_size=0x%08lx\n", start_eip, ((unsigned long)_secondary_start - start_eip), code_size); |
| #endif |
| } |
| |
| static int lapic_start_cpu(unsigned long apicid) |
| { |
| int timeout; |
| unsigned long send_status, accept_status, start_eip; |
| int j, num_starts, maxlvt; |
| |
| /* |
| * Starting actual IPI sequence... |
| */ |
| |
| printk_spew("Asserting INIT.\n"); |
| |
| /* |
| * Turn INIT on target chip |
| */ |
| lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid)); |
| |
| /* |
| * Send IPI |
| */ |
| |
| lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_INT_ASSERT |
| | LAPIC_DM_INIT); |
| |
| printk_spew("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| printk_spew("+"); |
| udelay(100); |
| send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| if (timeout >= 1000) { |
| printk_err("CPU %ld: First apic write timed out. Disabling\n", |
| apicid); |
| // too bad. |
| printk_err("ESR is 0x%lx\n", lapic_read(LAPIC_ESR)); |
| if (lapic_read(LAPIC_ESR)) { |
| printk_err("Try to reset ESR\n"); |
| lapic_write_around(LAPIC_ESR, 0); |
| printk_err("ESR is 0x%lx\n", lapic_read(LAPIC_ESR)); |
| } |
| return 0; |
| } |
| mdelay(10); |
| |
| printk_spew("Deasserting INIT.\n"); |
| |
| /* Target chip */ |
| lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid)); |
| |
| /* Send IPI */ |
| lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_DM_INIT); |
| |
| printk_spew("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| printk_spew("+"); |
| udelay(100); |
| send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| if (timeout >= 1000) { |
| printk_err("CPU %ld: Second apic write timed out. Disabling\n", |
| apicid); |
| // too bad. |
| return 0; |
| } |
| |
| #if CONFIG_RAMBASE >= 0x100000 |
| start_eip = get_valid_start_eip((unsigned long)_secondary_start); |
| #else |
| start_eip = (unsigned long)_secondary_start; |
| #endif |
| |
| num_starts = 2; |
| |
| /* |
| * Run STARTUP IPI loop. |
| */ |
| printk_spew("#startup loops: %d.\n", num_starts); |
| |
| maxlvt = 4; |
| |
| for (j = 1; j <= num_starts; j++) { |
| printk_spew("Sending STARTUP #%d to %lu.\n", j, apicid); |
| lapic_read_around(LAPIC_SPIV); |
| lapic_write(LAPIC_ESR, 0); |
| lapic_read(LAPIC_ESR); |
| printk_spew("After apic_write.\n"); |
| |
| /* |
| * STARTUP IPI |
| */ |
| |
| /* Target chip */ |
| lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(apicid)); |
| |
| /* Boot on the stack */ |
| /* Kick the second */ |
| lapic_write_around(LAPIC_ICR, LAPIC_DM_STARTUP |
| | (start_eip >> 12)); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(300); |
| |
| printk_spew("Startup point 1.\n"); |
| |
| printk_spew("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| printk_spew("+"); |
| udelay(100); |
| send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| |
| /* |
| * Give the other CPU some time to accept the IPI. |
| */ |
| udelay(200); |
| /* |
| * Due to the Pentium erratum 3AP. |
| */ |
| if (maxlvt > 3) { |
| lapic_read_around(LAPIC_SPIV); |
| lapic_write(LAPIC_ESR, 0); |
| } |
| accept_status = (lapic_read(LAPIC_ESR) & 0xEF); |
| if (send_status || accept_status) |
| break; |
| } |
| printk_spew("After Startup.\n"); |
| if (send_status) |
| printk_warning("APIC never delivered???\n"); |
| if (accept_status) |
| printk_warning("APIC delivery error (%lx).\n", accept_status); |
| if (send_status || accept_status) |
| return 0; |
| return 1; |
| } |
| |
| /* Number of cpus that are currently running in coreboot */ |
| static atomic_t active_cpus = ATOMIC_INIT(1); |
| |
| /* start_cpu_lock covers last_cpu_index and secondary_stack. |
| * Only starting one cpu at a time let's me remove the logic |
| * for select the stack from assembly language. |
| * |
| * In addition communicating by variables to the cpu I |
| * am starting allows me to veryify it has started before |
| * start_cpu returns. |
| */ |
| |
| static spinlock_t start_cpu_lock = SPIN_LOCK_UNLOCKED; |
| static unsigned last_cpu_index = 0; |
| volatile unsigned long secondary_stack; |
| |
| int start_cpu(device_t cpu) |
| { |
| extern unsigned char _estack[]; |
| struct cpu_info *info; |
| unsigned long stack_end; |
| unsigned long apicid; |
| unsigned long index; |
| unsigned long count; |
| int result; |
| |
| spin_lock(&start_cpu_lock); |
| |
| /* Get the cpu's apicid */ |
| apicid = cpu->path.apic.apic_id; |
| |
| /* Get an index for the new processor */ |
| index = ++last_cpu_index; |
| |
| /* Find end of the new processors stack */ |
| #if (CONFIG_RAMTOP>0x100000) && (CONFIG_RAMBASE < 0x100000) && ((CONFIG_CONSOLE_VGA==1) || (CONFIG_PCI_ROM_RUN == 1)) |
| if(index<1) { // only keep bsp on low |
| stack_end = ((unsigned long)_estack) - (CONFIG_STACK_SIZE*index) - sizeof(struct cpu_info); |
| } else { |
| // for all APs, let use stack after pgtbl, 20480 is the pgtbl size for every cpu |
| stack_end = 0x100000+(20480 + CONFIG_STACK_SIZE)*CONFIG_MAX_CPUS - (CONFIG_STACK_SIZE*index); |
| #if (0x100000+(20480 + CONFIG_STACK_SIZE)*CONFIG_MAX_CPUS) > (CONFIG_RAMTOP) |
| #warning "We may need to increase CONFIG_RAMTOP, it need to be more than (0x100000+(20480 + CONFIG_STACK_SIZE)*CONFIG_MAX_CPUS)\n" |
| #endif |
| if(stack_end > (CONFIG_RAMTOP)) { |
| printk_debug("start_cpu: Please increase the CONFIG_RAMTOP more than %luK\n", stack_end); |
| die("Can not go on\n"); |
| } |
| stack_end -= sizeof(struct cpu_info); |
| } |
| #else |
| stack_end = ((unsigned long)_estack) - (CONFIG_STACK_SIZE*index) - sizeof(struct cpu_info); |
| #endif |
| |
| |
| /* Record the index and which cpu structure we are using */ |
| info = (struct cpu_info *)stack_end; |
| info->index = index; |
| info->cpu = cpu; |
| |
| /* Advertise the new stack to start_cpu */ |
| secondary_stack = stack_end; |
| |
| /* Until the cpu starts up report the cpu is not enabled */ |
| cpu->enabled = 0; |
| cpu->initialized = 0; |
| |
| /* Start the cpu */ |
| result = lapic_start_cpu(apicid); |
| |
| if (result) { |
| result = 0; |
| /* Wait 1s or until the new the new cpu calls in */ |
| for(count = 0; count < 100000 ; count++) { |
| if (secondary_stack == 0) { |
| result = 1; |
| break; |
| } |
| udelay(10); |
| } |
| } |
| secondary_stack = 0; |
| spin_unlock(&start_cpu_lock); |
| return result; |
| } |
| |
| #if CONFIG_AP_IN_SIPI_WAIT == 1 |
| /** |
| * Normally this function is defined in lapic.h as an always inline function |
| * that just keeps the CPU in a hlt() loop. This does not work on all CPUs. |
| * I think all hyperthreading CPUs might need this version, but I could only |
| * verify this on the Intel Core Duo |
| */ |
| void stop_this_cpu(void) |
| { |
| int timeout; |
| unsigned long send_status; |
| unsigned long id; |
| |
| id = lapic_read(LAPIC_ID) >> 24; |
| |
| printk_debug("CPU %ld going down...\n", id); |
| |
| /* send an LAPIC INIT to myself */ |
| lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(id)); |
| lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_INT_ASSERT | LAPIC_DM_INIT); |
| |
| /* wait for the ipi send to finish */ |
| #if 0 |
| // When these two printk_spew calls are not removed, the |
| // machine will hang when log level is SPEW. Why? |
| printk_spew("Waiting for send to finish...\n"); |
| #endif |
| timeout = 0; |
| do { |
| #if 0 |
| printk_spew("+"); |
| #endif |
| udelay(100); |
| send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| if (timeout >= 1000) { |
| printk_err("timed out\n"); |
| } |
| mdelay(10); |
| |
| printk_spew("Deasserting INIT.\n"); |
| /* Deassert the LAPIC INIT */ |
| lapic_write_around(LAPIC_ICR2, SET_LAPIC_DEST_FIELD(id)); |
| lapic_write_around(LAPIC_ICR, LAPIC_INT_LEVELTRIG | LAPIC_DM_INIT); |
| |
| printk_spew("Waiting for send to finish...\n"); |
| timeout = 0; |
| do { |
| printk_spew("+"); |
| udelay(100); |
| send_status = lapic_read(LAPIC_ICR) & LAPIC_ICR_BUSY; |
| } while (send_status && (timeout++ < 1000)); |
| if (timeout >= 1000) { |
| printk_err("timed out\n"); |
| } |
| |
| while(1) { |
| hlt(); |
| } |
| } |
| #endif |
| |
| /* C entry point of secondary cpus */ |
| void secondary_cpu_init(void) |
| { |
| atomic_inc(&active_cpus); |
| #if CONFIG_SERIAL_CPU_INIT == 1 |
| #if CONFIG_MAX_CPUS>2 |
| spin_lock(&start_cpu_lock); |
| #endif |
| #endif |
| cpu_initialize(); |
| #if CONFIG_SERIAL_CPU_INIT == 1 |
| #if CONFIG_MAX_CPUS>2 |
| spin_unlock(&start_cpu_lock); |
| #endif |
| #endif |
| |
| atomic_dec(&active_cpus); |
| |
| stop_this_cpu(); |
| } |
| |
| static void start_other_cpus(struct bus *cpu_bus, device_t bsp_cpu) |
| { |
| device_t cpu; |
| /* Loop through the cpus once getting them started */ |
| |
| for(cpu = cpu_bus->children; cpu ; cpu = cpu->sibling) { |
| if (cpu->path.type != DEVICE_PATH_APIC) { |
| continue; |
| } |
| #if CONFIG_SERIAL_CPU_INIT == 0 |
| if(cpu==bsp_cpu) { |
| continue; |
| } |
| #endif |
| |
| if (!cpu->enabled) { |
| continue; |
| } |
| |
| if (cpu->initialized) { |
| continue; |
| } |
| |
| if (!start_cpu(cpu)) { |
| /* Record the error in cpu? */ |
| printk_err("CPU 0x%02x would not start!\n", |
| cpu->path.apic.apic_id); |
| } |
| #if CONFIG_SERIAL_CPU_INIT == 1 |
| #if CONFIG_MAX_CPUS>2 |
| udelay(10); |
| #endif |
| #endif |
| } |
| |
| } |
| |
| static void wait_other_cpus_stop(struct bus *cpu_bus) |
| { |
| device_t cpu; |
| int old_active_count, active_count; |
| /* Now loop until the other cpus have finished initializing */ |
| old_active_count = 1; |
| active_count = atomic_read(&active_cpus); |
| while(active_count > 1) { |
| if (active_count != old_active_count) { |
| printk_info("Waiting for %d CPUS to stop\n", active_count - 1); |
| old_active_count = active_count; |
| } |
| udelay(10); |
| active_count = atomic_read(&active_cpus); |
| } |
| for(cpu = cpu_bus->children; cpu; cpu = cpu->sibling) { |
| if (cpu->path.type != DEVICE_PATH_APIC) { |
| continue; |
| } |
| if (!cpu->initialized) { |
| printk_err("CPU 0x%02x did not initialize!\n", |
| cpu->path.apic.apic_id); |
| } |
| } |
| printk_debug("All AP CPUs stopped\n"); |
| } |
| |
| #else /* CONFIG_SMP */ |
| #define initialize_other_cpus(root) do {} while(0) |
| #endif /* CONFIG_SMP */ |
| |
| void initialize_cpus(struct bus *cpu_bus) |
| { |
| struct device_path cpu_path; |
| struct cpu_info *info; |
| |
| /* Find the info struct for this cpu */ |
| info = cpu_info(); |
| |
| #if NEED_LAPIC == 1 |
| /* Ensure the local apic is enabled */ |
| enable_lapic(); |
| |
| /* Get the device path of the boot cpu */ |
| cpu_path.type = DEVICE_PATH_APIC; |
| cpu_path.apic.apic_id = lapicid(); |
| #else |
| /* Get the device path of the boot cpu */ |
| cpu_path.type = DEVICE_PATH_CPU; |
| cpu_path.cpu.id = 0; |
| #endif |
| |
| /* Find the device structure for the boot cpu */ |
| info->cpu = alloc_find_dev(cpu_bus, &cpu_path); |
| |
| #if CONFIG_SMP == 1 |
| copy_secondary_start_to_1m_below(); // why here? In case some day we can start core1 in amd_sibling_init |
| #endif |
| |
| #if CONFIG_HAVE_SMI_HANDLER |
| smm_init(); |
| #endif |
| |
| cpus_ready_for_init(); |
| |
| #if CONFIG_SMP == 1 |
| #if CONFIG_SERIAL_CPU_INIT == 0 |
| /* start all aps at first, so we can init ECC all together */ |
| start_other_cpus(cpu_bus, info->cpu); |
| #endif |
| #endif |
| |
| /* Initialize the bootstrap processor */ |
| cpu_initialize(); |
| |
| #if CONFIG_SMP == 1 |
| #if CONFIG_SERIAL_CPU_INIT == 1 |
| start_other_cpus(cpu_bus, info->cpu); |
| #endif |
| |
| /* Now wait the rest of the cpus stop*/ |
| wait_other_cpus_stop(cpu_bus); |
| #endif |
| } |
| |