blob: df040cae215358b81dac311b326c5414fdf5262d [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* MultiMediaCard (MMC), eMMC and Secure Digital (SD) common code which
* transitions the card from the standby state to the transfer state. The
* common code supports read operations, erase and write operations are in
* a separate modules. This code is controller independent.
*/
#include <commonlib/storage.h>
#include "sd_mmc.h"
#include "storage.h"
#include <string.h>
#define DECIMAL_CAPACITY_MULTIPLIER 1000ULL
#define HEX_CAPACITY_MULTIPLIER 1024ULL
struct capacity {
const char *const units;
uint64_t bytes;
};
static void display_capacity(struct storage_media *media, int partition_number)
{
uint64_t capacity;
uint64_t decimal_divisor;
const char *decimal_units;
uint64_t hex_divisor;
const char *hex_units;
int index;
const char *name;
const char *separator;
const struct capacity decimal_list[] = {
{"TB", DECIMAL_CAPACITY_MULTIPLIER * DECIMAL_CAPACITY_MULTIPLIER
* DECIMAL_CAPACITY_MULTIPLIER
* DECIMAL_CAPACITY_MULTIPLIER},
{"GB", DECIMAL_CAPACITY_MULTIPLIER * DECIMAL_CAPACITY_MULTIPLIER
* DECIMAL_CAPACITY_MULTIPLIER},
{"MB", DECIMAL_CAPACITY_MULTIPLIER
* DECIMAL_CAPACITY_MULTIPLIER},
{"KB", DECIMAL_CAPACITY_MULTIPLIER},
{"B", 1}
};
const struct capacity hex_list[] = {
{"TiB", HEX_CAPACITY_MULTIPLIER * HEX_CAPACITY_MULTIPLIER
* HEX_CAPACITY_MULTIPLIER * HEX_CAPACITY_MULTIPLIER},
{"GiB", HEX_CAPACITY_MULTIPLIER * HEX_CAPACITY_MULTIPLIER
* HEX_CAPACITY_MULTIPLIER},
{"MiB", HEX_CAPACITY_MULTIPLIER * HEX_CAPACITY_MULTIPLIER},
{"KiB", HEX_CAPACITY_MULTIPLIER},
{"B", 1}
};
/* Get the partition name */
capacity = media->capacity[partition_number];
name = storage_partition_name(media, partition_number);
separator = "";
if (CONFIG(COMMONLIB_STORAGE_MMC) && !IS_SD(media))
separator = ": ";
/* Determine the decimal divisor for the capacity */
for (index = 0; index < ARRAY_SIZE(decimal_list) - 1; index++) {
if (capacity >= decimal_list[index].bytes)
break;
}
decimal_divisor = decimal_list[index].bytes;
decimal_units = decimal_list[index].units;
/* Determine the hex divisor for the capacity */
for (index = 0; index < ARRAY_SIZE(hex_list) - 1; index++) {
if (capacity >= hex_list[index].bytes)
break;
}
hex_divisor = hex_list[index].bytes;
hex_units = hex_list[index].units;
/* Display the capacity */
sdhc_debug("%3lld.%03lld %sytes (%3lld.%03lld %sytes)%s%s\n",
capacity / decimal_divisor,
(capacity / (decimal_divisor / 1000)) % 1000,
decimal_units,
capacity / hex_divisor,
((capacity / (hex_divisor / 1024)) * 1000 / 1024) % 1000,
hex_units,
separator,
name);
}
void storage_display_setup(struct storage_media *media)
{
int partition_number;
/* Display the device info */
sd_mmc_debug("Man %06x Snr %u ",
media->cid[0] >> 24,
(((media->cid[2] & 0xffff) << 16) |
((media->cid[3] >> 16) & 0xffff)));
sd_mmc_debug("Product %c%c%c%c", media->cid[0] & 0xff,
(media->cid[1] >> 24), (media->cid[1] >> 16) & 0xff,
(media->cid[1] >> 8) & 0xff);
if (!IS_SD(media)) /* eMMC product string is longer */
sd_mmc_debug("%c%c", media->cid[1] & 0xff,
(media->cid[2] >> 24) & 0xff);
sd_mmc_debug(" Revision %d.%d\n", (media->cid[2] >> 20) & 0xf,
(media->cid[2] >> 16) & 0xf);
/* Display the erase block size */
sdhc_debug("Erase block size: 0x%08x\n", media->erase_blocks
* media->write_bl_len);
/* Display the partition capacities */
if (CONFIG(SDHC_DEBUG)) {
for (partition_number = 0; partition_number
< ARRAY_SIZE(media->capacity); partition_number++) {
if (!media->capacity[partition_number])
continue;
display_capacity(media, partition_number);
}
}
}
int storage_startup(struct storage_media *media)
{
int err;
uint64_t capacity;
uint64_t cmult, csize;
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
/* Determine the storage capacity */
if (media->high_capacity) {
cmult = 8;
csize = sd_mmc_extract_uint32_bits(media->csd, 58, 22);
} else {
csize = sd_mmc_extract_uint32_bits(media->csd, 54, 12);
cmult = sd_mmc_extract_uint32_bits(media->csd, 78, 3);
}
capacity = (csize + 1) << (cmult + 2);
capacity *= media->read_bl_len;
media->capacity[0] = capacity;
/* Limit the block size to 512 bytes */
if (media->read_bl_len > 512)
media->read_bl_len = 512;
if (media->write_bl_len > 512)
media->write_bl_len = 512;
/* Get the erase size in blocks */
media->erase_blocks =
(sd_mmc_extract_uint32_bits(media->csd, 47, 3) + 1)
* (sd_mmc_extract_uint32_bits(media->csd, 42, 5) + 1);
/* Select the card, and put it into Transfer Mode */
cmd.cmdidx = MMC_CMD_SELECT_CARD;
cmd.resp_type = CARD_RSP_R1;
cmd.cmdarg = media->rca << 16;
cmd.flags = 0;
err = ctrlr->send_cmd(ctrlr, &cmd, NULL);
if (err)
return err;
/* Increase the bus frequency */
if (CONFIG(COMMONLIB_STORAGE_SD) && IS_SD(media))
err = sd_change_freq(media);
else if (CONFIG(COMMONLIB_STORAGE_MMC)) {
err = mmc_change_freq(media);
if (!err)
mmc_update_capacity(media);
}
if (err)
return err;
/* Restrict card's capabilities by what the controller can do */
media->caps &= ctrlr->caps;
/* Increase the bus width if possible */
if (CONFIG(COMMONLIB_STORAGE_SD) && IS_SD(media))
err = sd_set_bus_width(media);
else if (CONFIG(COMMONLIB_STORAGE_MMC))
err = mmc_set_bus_width(media);
if (err)
return err;
/* Display the card setup */
storage_display_setup(media);
return 0;
}
int storage_setup_media(struct storage_media *media, struct sd_mmc_ctrlr *ctrlr)
{
int err;
memset(media, 0, sizeof(*media));
media->ctrlr = ctrlr;
err = sd_mmc_enter_standby(media);
if (err)
return err;
return storage_startup(media);
}
static int storage_read(struct storage_media *media, void *dest, uint32_t start,
uint32_t block_count)
{
struct mmc_command cmd;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
cmd.resp_type = CARD_RSP_R1;
cmd.flags = 0;
if (block_count > 1)
cmd.cmdidx = MMC_CMD_READ_MULTIPLE_BLOCK;
else
cmd.cmdidx = MMC_CMD_READ_SINGLE_BLOCK;
if (media->high_capacity)
cmd.cmdarg = start;
else
cmd.cmdarg = start * media->read_bl_len;
struct mmc_data data;
data.dest = dest;
data.blocks = block_count;
data.blocksize = media->read_bl_len;
data.flags = DATA_FLAG_READ;
if (ctrlr->send_cmd(ctrlr, &cmd, &data))
return 0;
if ((block_count > 1) && !(ctrlr->caps
& DRVR_CAP_AUTO_CMD12)) {
cmd.cmdidx = MMC_CMD_STOP_TRANSMISSION;
cmd.cmdarg = 0;
cmd.resp_type = CARD_RSP_R1b;
cmd.flags = CMD_FLAG_IGNORE_INHIBIT;
if (ctrlr->send_cmd(ctrlr, &cmd, NULL)) {
sd_mmc_error("Failed to send stop cmd\n");
return 0;
}
/* Waiting for the ready status */
sd_mmc_send_status(media, SD_MMC_IO_RETRIES);
}
return block_count;
}
/////////////////////////////////////////////////////////////////////////////
// BlockDevice utilities and callbacks
int storage_block_setup(struct storage_media *media, uint64_t start,
uint64_t count, int is_read)
{
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
int partition_number;
if (count == 0)
return 0;
uint32_t bl_len = is_read ? media->read_bl_len :
media->write_bl_len;
/* Validate the block range */
partition_number = media->partition_config & EXT_CSD_PART_ACCESS_MASK;
if (((start * bl_len) > media->capacity[partition_number])
|| (((start + count) * bl_len) >
media->capacity[partition_number])) {
sd_mmc_error("Block range exceeds device capacity\n");
return 0;
}
/*
* CMD16 only applies to single data rate mode, and block
* length for double data rate is always 512 bytes.
*/
if ((ctrlr->timing == BUS_TIMING_UHS_DDR50) ||
(ctrlr->timing == BUS_TIMING_MMC_DDR52) ||
(ctrlr->timing == BUS_TIMING_MMC_HS400) ||
(ctrlr->timing == BUS_TIMING_MMC_HS400ES))
return 1;
if (sd_mmc_set_blocklen(ctrlr, bl_len))
return 0;
return 1;
}
uint64_t storage_block_read(struct storage_media *media, uint64_t start,
uint64_t count, void *buffer)
{
uint8_t *dest = (uint8_t *)buffer;
if (storage_block_setup(media, start, count, 1) == 0)
return 0;
uint64_t todo = count;
struct sd_mmc_ctrlr *ctrlr = media->ctrlr;
do {
uint32_t cur = (uint32_t)MIN(todo, ctrlr->b_max);
if (storage_read(media, dest, start, cur) != cur)
return 0;
todo -= cur;
sd_mmc_trace("%s: Got %d blocks, more %d (total %d) to go.\n",
__func__, (int)cur, (int)todo, (int)count);
start += cur;
dest += cur * media->read_bl_len;
} while (todo > 0);
return count;
}
int storage_set_partition(struct storage_media *media,
unsigned int partition_number)
{
int err;
/* Select the partition */
err = -1;
if (CONFIG(COMMONLIB_STORAGE_SD) && IS_SD(media))
err = sd_set_partition(media, partition_number);
else if (CONFIG(COMMONLIB_STORAGE_MMC))
err = mmc_set_partition(media, partition_number);
if (err)
sd_mmc_error("Invalid partition number!\n");
return err;
}
const char *storage_partition_name(struct storage_media *media,
unsigned int partition_number)
{
const char *name;
/* Get the partition name */
name = NULL;
if (CONFIG(COMMONLIB_STORAGE_SD) && IS_SD(media))
name = sd_partition_name(media, partition_number);
else if (CONFIG(COMMONLIB_STORAGE_MMC))
name = mmc_partition_name(media, partition_number);
return name;
}
unsigned int storage_get_current_partition(struct storage_media *media)
{
return media->partition_config & EXT_CSD_PART_ACCESS_MASK;
}