| /* $NoKeywords:$ */ |
| /** |
| * @file |
| * |
| * mnmct.c |
| * |
| * Northbridge Common MCT supporting functions |
| * |
| * @xrefitem bom "File Content Label" "Release Content" |
| * @e project: AGESA |
| * @e sub-project: (Mem/NB) |
| * @e \$Revision: 47509 $ @e \$Date: 2011-02-23 06:15:32 +0800 (Wed, 23 Feb 2011) $ |
| * |
| **/ |
| /***************************************************************************** |
| * |
| * Copyright (c) 2011, Advanced Micro Devices, Inc. |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * * Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * * Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * * Neither the name of Advanced Micro Devices, Inc. nor the names of |
| * its contributors may be used to endorse or promote products derived |
| * from this software without specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED |
| * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE |
| * DISCLAIMED. IN NO EVENT SHALL ADVANCED MICRO DEVICES, INC. BE LIABLE FOR ANY |
| * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES |
| * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; |
| * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND |
| * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| * *************************************************************************** |
| * |
| */ |
| |
| /* |
| *---------------------------------------------------------------------------- |
| * MODULES USED |
| * |
| *---------------------------------------------------------------------------- |
| */ |
| |
| |
| |
| #include "AGESA.h" |
| #include "amdlib.h" |
| #include "Ids.h" |
| #include "mport.h" |
| #include "mm.h" |
| #include "mn.h" |
| #include "mu.h" |
| #include "OptionMemory.h" |
| #include "PlatformMemoryConfiguration.h" |
| #include "GeneralServices.h" |
| #include "cpuFeatures.h" |
| #include "merrhdl.h" |
| #include "Filecode.h" |
| CODE_GROUP (G1_PEICC) |
| RDATA_GROUP (G1_PEICC) |
| |
| #define FILECODE PROC_MEM_NB_MNMCT_FILECODE |
| /*---------------------------------------------------------------------------- |
| * DEFINITIONS AND MACROS |
| * |
| *---------------------------------------------------------------------------- |
| */ |
| #define _16MB_RJ16 0x0100 |
| |
| /*---------------------------------------------------------------------------- |
| * TYPEDEFS AND STRUCTURES |
| * |
| *---------------------------------------------------------------------------- |
| */ |
| |
| /*---------------------------------------------------------------------------- |
| * PROTOTYPES OF LOCAL FUNCTIONS |
| * |
| *---------------------------------------------------------------------------- |
| */ |
| BOOLEAN |
| STATIC |
| MemNSetMTRRrangeNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr, |
| IN UINT32 Base, |
| IN OUT UINT32 *LimitPtr, |
| IN UINT32 MtrrAddr, |
| IN UINT8 MtrrType |
| ); |
| |
| /*---------------------------------------------------------------------------- |
| * EXPORTED FUNCTIONS |
| * |
| *---------------------------------------------------------------------------- |
| */ |
| extern BUILD_OPT_CFG UserOptions; |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * Get max frequency from OEM platform definition, from |
| * any user override (limiting) of max frequency, and |
| * from any Si Revision Specific information. Return |
| * the least of these three in DIE_STRUCT.Timings.TargetSpeed. |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| */ |
| |
| VOID |
| MemNSyncTargetSpeedNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| CONST UINT16 DdrMaxRateTab[] = { |
| UNSUPPORTED_DDR_FREQUENCY, |
| DDR1600_FREQUENCY, |
| DDR1333_FREQUENCY, |
| DDR1066_FREQUENCY, |
| DDR800_FREQUENCY, |
| DDR667_FREQUENCY, |
| DDR533_FREQUENCY, |
| DDR400_FREQUENCY |
| }; |
| |
| UINT8 Dct; |
| UINT8 Channel; |
| UINT16 MinSpeed; |
| UINT16 DdrMaxRate; |
| DCT_STRUCT *DCTPtr; |
| USER_MEMORY_TIMING_MODE *ChnlTmgMod; |
| USER_MEMORY_TIMING_MODE Mode[MAX_CHANNELS_PER_SOCKET]; |
| MEMORY_BUS_SPEED MemClkFreq; |
| MEMORY_BUS_SPEED ProposedFreq; |
| |
| ASSERT (NBPtr->DctCount <= sizeof (Mode)); |
| MinSpeed = 16000; |
| DdrMaxRate = 16000; |
| if (NBPtr->IsSupported[CheckMaxDramRate]) { |
| // Check maximum DRAM data rate that the processor is designed to support. |
| DdrMaxRate = DdrMaxRateTab[MemNGetBitFieldNb (NBPtr, BFDdrMaxRate)]; |
| NBPtr->FamilySpecificHook[GetDdrMaxRate] (NBPtr, &DdrMaxRate); |
| IDS_OPTION_HOOK (IDS_SKIP_FUSED_MAX_RATE, &DdrMaxRate, &NBPtr->MemPtr->StdHeader); |
| } |
| |
| for (Dct = 0; Dct < NBPtr->DctCount; Dct++) { |
| MemNSwitchDCTNb (NBPtr, Dct); |
| DCTPtr = NBPtr->DCTPtr; |
| |
| // Check if input user time mode is valid or not |
| ASSERT ((NBPtr->RefPtr->UserTimingMode == TIMING_MODE_SPECIFIC) || |
| (NBPtr->RefPtr->UserTimingMode == TIMING_MODE_LIMITED) || |
| (NBPtr->RefPtr->UserTimingMode == TIMING_MODE_AUTO)); |
| Mode[Dct] = NBPtr->RefPtr->UserTimingMode; |
| // Check if input clock value is valid or not |
| ASSERT ((NBPtr->ChannelPtr->TechType == DDR3_TECHNOLOGY) ? |
| (NBPtr->RefPtr->MemClockValue >= DDR667_FREQUENCY) : |
| (NBPtr->RefPtr->MemClockValue <= DDR1066_FREQUENCY)); |
| MemClkFreq = NBPtr->RefPtr->MemClockValue; |
| if (DCTPtr->Timings.DctDimmValid != 0) { |
| Channel = MemNGetSocketRelativeChannelNb (NBPtr, Dct, 0); |
| ChnlTmgMod = (USER_MEMORY_TIMING_MODE *) FindPSOverrideEntry (NBPtr->RefPtr->PlatformMemoryConfiguration, PSO_BUS_SPEED, NBPtr->MCTPtr->SocketId, Channel); |
| if (ChnlTmgMod != NULL) { |
| // Check if input user timing mode is valid or not |
| ASSERT ((ChnlTmgMod[0] == TIMING_MODE_SPECIFIC) || (ChnlTmgMod[0] == TIMING_MODE_LIMITED) || |
| (ChnlTmgMod[0] != TIMING_MODE_AUTO)); |
| if (ChnlTmgMod[0] != TIMING_MODE_AUTO) { |
| Mode[Dct] = ChnlTmgMod[0]; |
| // Check if input clock value is valid or not |
| // ASSERT ((NBPtr->ChannelPtr->TechType == DDR3_TECHNOLOGY) ? |
| // (ChnlTmgMod[1] >= DDR667_FREQUENCY) : |
| // (ChnlTmgMod[1] <= DDR1066_FREQUENCY)); |
| MemClkFreq = (MEMORY_BUS_SPEED) ChnlTmgMod[1]; |
| } |
| } |
| |
| ProposedFreq = UserOptions.CfgMemoryBusFrequencyLimit; |
| if (Mode[Dct] == TIMING_MODE_LIMITED) { |
| if (MemClkFreq < ProposedFreq) { |
| ProposedFreq = MemClkFreq; |
| } |
| } else if (Mode[Dct] == TIMING_MODE_SPECIFIC) { |
| ProposedFreq = MemClkFreq; |
| } |
| |
| if (Mode[Dct] == TIMING_MODE_SPECIFIC) { |
| DCTPtr->Timings.TargetSpeed = (UINT16) ProposedFreq; |
| } else { |
| // "limit" mode |
| if (DCTPtr->Timings.TargetSpeed > ProposedFreq) { |
| DCTPtr->Timings.TargetSpeed = (UINT16) ProposedFreq; |
| } |
| } |
| |
| NBPtr->MemNCapSpeedBatteryLife (NBPtr); |
| |
| if (DCTPtr->Timings.TargetSpeed > DdrMaxRate) { |
| if (Mode[Dct] == TIMING_MODE_SPECIFIC) { |
| PutEventLog (AGESA_ALERT, MEM_ALERT_USER_TMG_MODE_OVERRULED, NBPtr->Node, NBPtr->Dct, NBPtr->Channel, 0, &NBPtr->MemPtr->StdHeader); |
| SetMemError (AGESA_ALERT, NBPtr->MCTPtr); |
| } |
| DCTPtr->Timings.TargetSpeed = DdrMaxRate; |
| } |
| |
| IDS_SKIP_HOOK (IDS_POR_MEM_FREQ, NBPtr, &NBPtr->MemPtr->StdHeader) { |
| // |
| //Call Platform POR Frequency Override |
| // |
| if (!MemProcessConditionalOverrides (NBPtr->RefPtr->PlatformMemoryConfiguration, NBPtr, PSO_ACTION_SPEEDLIMIT, ALL_DIMMS)) { |
| // |
| // Get the POR frequency limit |
| // |
| NBPtr->PsPtr->MemPGetPORFreqLimit (NBPtr); |
| } |
| } |
| |
| if (MinSpeed > DCTPtr->Timings.TargetSpeed) { |
| MinSpeed = DCTPtr->Timings.TargetSpeed; |
| } |
| } |
| } |
| |
| if (MinSpeed == DDR667_FREQUENCY) { |
| NBPtr->StartupSpeed = DDR667_FREQUENCY; |
| } |
| |
| // Sync all DCTs to the same speed |
| for (Dct = 0; Dct < NBPtr->DctCount; Dct++) { |
| MemNSwitchDCTNb (NBPtr, Dct); |
| NBPtr->DCTPtr->Timings.TargetSpeed = MinSpeed; |
| } |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * This function waits for all DCTs to be ready |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| * @return TRUE - No fatal error occurs. |
| * @return FALSE - Fatal error occurs. |
| */ |
| |
| BOOLEAN |
| MemNSyncDctsReadyNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| if (NBPtr->MCTPtr->DimmValid) { |
| MemNPollBitFieldNb (NBPtr, BFDramEnabled, 1, PCI_ACCESS_TIMEOUT, FALSE); |
| // Re-enable phy compensation engine after Dram init has completed |
| MemNSwitchDCTNb (NBPtr, 0); |
| MemNSetBitFieldNb (NBPtr, BFDisAutoComp, 0); |
| } |
| // Wait 750 us for the phy compensation engine to reinitialize. |
| MemUWait10ns (75000, NBPtr->MemPtr); |
| |
| MemNSyncAddrMapToAllNodesNb (NBPtr); |
| return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL); |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * This function create the HT memory map |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| * @return TRUE - No fatal error occurs. |
| * @return FALSE - Fatal error occurs. |
| */ |
| |
| BOOLEAN |
| MemNHtMemMapInitNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| UINT32 BottomIo; |
| UINT32 HoleOffset; |
| UINT32 DctSelBaseAddr; |
| UINT32 NodeSysBase; |
| UINT32 NodeSysLimit; |
| MEM_PARAMETER_STRUCT *RefPtr; |
| DIE_STRUCT *MCTPtr; |
| |
| RefPtr = NBPtr->RefPtr; |
| MCTPtr = NBPtr->MCTPtr; |
| // |
| // Physical addresses in this function are right adjusted by 16 bits ([47:16]) |
| // They are BottomIO, HoleOffset, DctSelBaseAddr, NodeSysBase, NodeSysLimit. |
| // |
| |
| // Enforce bottom of IO be be 128MB aligned |
| ASSERT ((RefPtr->BottomIo < (_4GB_RJ16 >> 8)) && (RefPtr->BottomIo != 0)); |
| BottomIo = (RefPtr->BottomIo & 0xF8) << 8; |
| |
| if (!MCTPtr->GangedMode) { |
| DctSelBaseAddr = MCTPtr->DctData[0].Timings.DctMemSize; |
| } else { |
| DctSelBaseAddr = 0; |
| } |
| |
| if (MCTPtr->NodeMemSize) { |
| NodeSysBase = NBPtr->SharedPtr->CurrentNodeSysBase; |
| NodeSysLimit = NodeSysBase + MCTPtr->NodeMemSize - 1; |
| DctSelBaseAddr += NodeSysBase; |
| |
| if ((NBPtr->IsSupported[ForceEnMemHoleRemapping]) || (RefPtr->MemHoleRemapping)) { |
| if ((NodeSysBase < BottomIo) && (NodeSysLimit >= BottomIo)) { |
| // HW Dram Remap |
| MCTPtr->Status[SbHWHole] = TRUE; |
| RefPtr->GStatus[GsbHWHole] = TRUE; |
| MCTPtr->NodeHoleBase = BottomIo; |
| RefPtr->HoleBase = BottomIo; |
| |
| HoleOffset = _4GB_RJ16 - BottomIo; |
| |
| NodeSysLimit += HoleOffset; |
| |
| if ((DctSelBaseAddr > 0) && (DctSelBaseAddr < BottomIo)) { |
| HoleOffset += DctSelBaseAddr; |
| } else { |
| if (DctSelBaseAddr >= BottomIo) { |
| DctSelBaseAddr += HoleOffset; |
| } |
| HoleOffset += NodeSysBase; |
| } |
| |
| MemNSetBitFieldNb (NBPtr, BFDramHoleBase, BottomIo >> 8); |
| MemNSetBitFieldNb (NBPtr, BFDramHoleOffset, HoleOffset >> 7); |
| MemNSetBitFieldNb (NBPtr, BFDramHoleValid, 1); |
| |
| } else if (NodeSysBase == BottomIo) { |
| // SW Node Hoist |
| MCTPtr->Status[SbSWNodeHole] = TRUE; |
| RefPtr->GStatus[GsbSpIntRemapHole] = TRUE; |
| RefPtr->GStatus[GsbSoftHole] = TRUE; |
| |
| RefPtr->HoleBase = NodeSysBase; |
| DctSelBaseAddr = _4GB_RJ16 + (DctSelBaseAddr - NodeSysBase); |
| NodeSysLimit = _4GB_RJ16 + (NodeSysLimit - NodeSysBase); |
| NodeSysBase = _4GB_RJ16; |
| |
| } else if ((NodeSysBase < HT_REGION_BASE_RJ16) && (NodeSysLimit >= HT_REGION_BASE_RJ16)) { |
| if (!NBPtr->SharedPtr->UndoHoistingAbove1TB) { |
| // SW Hoisting above 1TB to avoid HT Reserved region |
| DctSelBaseAddr = _1TB_RJ16 + (DctSelBaseAddr - NodeSysBase); |
| NodeSysLimit = _1TB_RJ16 + (NodeSysLimit - NodeSysBase); |
| NodeSysBase = _1TB_RJ16; |
| |
| if (RefPtr->LimitMemoryToBelow1Tb) { |
| // Flag to undo 1TB hoisting after training |
| NBPtr->SharedPtr->UndoHoistingAbove1TB = TRUE; |
| } |
| } |
| |
| } else { |
| // No Remapping. Normal Contiguous mapping |
| } |
| } else { |
| // No Remapping. Normal Contiguous mapping |
| } |
| |
| if (NBPtr->IsSupported[Check1GAlign]) { |
| if (UserOptions.CfgNodeMem1GBAlign) { |
| NBPtr->MemPNodeMemBoundaryNb (NBPtr, (UINT32 *)&NodeSysLimit); |
| } |
| } |
| |
| MCTPtr->NodeSysBase = NodeSysBase; |
| MCTPtr->NodeSysLimit = NodeSysLimit; |
| RefPtr->SysLimit = NodeSysLimit; |
| RefPtr->Sub1THoleBase = (NodeSysLimit < HT_REGION_BASE_RJ16) ? (NodeSysLimit + 1) : RefPtr->Sub1THoleBase; |
| IDS_OPTION_HOOK (IDS_MEM_SIZE_OVERLAY, NBPtr, &NBPtr->MemPtr->StdHeader); |
| |
| NBPtr->SharedPtr->TopNode = NBPtr->Node; |
| |
| NBPtr->SharedPtr->NodeMap[NBPtr->Node].IsValid = TRUE; |
| NBPtr->SharedPtr->NodeMap[NBPtr->Node].SysBase = NodeSysBase; |
| NBPtr->SharedPtr->NodeMap[NBPtr->Node].SysLimit = NodeSysLimit & 0xFFFFFF00; |
| |
| MemNSetBitFieldNb (NBPtr, BFDramBaseAddr, NodeSysBase >> (27 - 16)); |
| MemNSetBitFieldNb (NBPtr, BFDramLimitAddr, NodeSysLimit >> (27 - 16)); |
| |
| if ((MCTPtr->DctData[1].Timings.DctMemSize != 0) && (!NBPtr->Ganged)) { |
| MemNSetBitFieldNb (NBPtr, BFDctSelBaseAddr, DctSelBaseAddr >> 11); |
| MemNSetBitFieldNb (NBPtr, BFDctSelHiRngEn, 1); |
| MemNSetBitFieldNb (NBPtr, BFDctSelHi, 1); |
| MemNSetBitFieldNb (NBPtr, BFDctSelBaseOffset, DctSelBaseAddr >> 10); |
| } |
| |
| NBPtr->SharedPtr->CurrentNodeSysBase = (NodeSysLimit + 1) & 0xFFFFFFF0; |
| } |
| return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL); |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * Program system DRAM map to this node |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| */ |
| |
| VOID |
| MemNSyncAddrMapToAllNodesNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| UINT8 Node; |
| UINT32 NodeSysBase; |
| UINT32 NodeSysLimit; |
| UINT8 WeReMask; |
| MEM_PARAMETER_STRUCT *RefPtr; |
| |
| RefPtr = NBPtr->RefPtr; |
| for (Node = 0; Node < NBPtr->NodeCount; Node++) { |
| NodeSysBase = NBPtr->SharedPtr->NodeMap[Node].SysBase; |
| NodeSysLimit = NBPtr->SharedPtr->NodeMap[Node].SysLimit; |
| if (NBPtr->SharedPtr->NodeMap[Node].IsValid) { |
| WeReMask = 3; |
| } else { |
| WeReMask = 0; |
| } |
| // Set the Dram base and set the WE and RE flags in the base. |
| MemNSetBitFieldNb (NBPtr, BFDramBaseReg0 + Node, (NodeSysBase << 8) | WeReMask); |
| MemNSetBitFieldNb (NBPtr, BFDramBaseHiReg0 + Node, NodeSysBase >> 24); |
| // Set the Dram limit and set DstNode. |
| MemNSetBitFieldNb (NBPtr, BFDramLimitReg0 + Node, (NodeSysLimit << 8) | Node); |
| MemNSetBitFieldNb (NBPtr, BFDramLimitHiReg0 + Node, NodeSysLimit >> 24); |
| |
| if (RefPtr->GStatus[GsbHWHole]) { |
| MemNSetBitFieldNb (NBPtr, BFDramMemHoistValid, 1); |
| MemNSetBitFieldNb (NBPtr, BFDramHoleBase, (RefPtr->HoleBase >> 8)); |
| } |
| } |
| |
| NBPtr->FamilySpecificHook[InitExtMMIOAddr] (NBPtr, NULL); |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * This function enables power down mode |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| */ |
| |
| VOID |
| MemNPowerDownCtlNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| MEM_PARAMETER_STRUCT *RefPtr; |
| UINT8 PowerDownMode; |
| |
| RefPtr = NBPtr->RefPtr; |
| |
| // we can't enable powerdown mode when doing WL |
| if (RefPtr->EnablePowerDown) { |
| MemNSetBitFieldNb (NBPtr, BFPowerDownEn, 1); |
| PowerDownMode = (UINT8) ((UserOptions.CfgPowerDownMode == POWER_DOWN_MODE_AUTO) ? POWER_DOWN_BY_CHANNEL : UserOptions.CfgPowerDownMode); |
| IDS_OPTION_HOOK (IDS_POWERDOWN_MODE, &PowerDownMode, &(NBPtr->MemPtr->StdHeader)); |
| if (PowerDownMode) { |
| MemNSetBitFieldNb (NBPtr, BFPowerDownMode, 1); |
| } |
| } |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * This function gets the Optimal Critical Gross Delay Difference between |
| * the delay parameters across all Dimms on each bytelane. Then takes the |
| * largest of all the bytelanes. |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * @param[in] TrnDly1 - Type of first Gross Delay parameter |
| * @param[in] TrnDly2 - Type of second Gross Delay parameter |
| * |
| * @return The largest difference between the largest and smallest |
| * of the two Gross delay types within a single bytelane |
| */ |
| INT8 |
| MemNGetOptimalCGDDNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr, |
| IN TRN_DLY_TYPE TrnDly1, |
| IN TRN_DLY_TYPE TrnDly2 |
| ) |
| { |
| INT8 CGDD; |
| INT8 GDD; |
| UINT8 Dimm1; |
| UINT8 Dimm2; |
| UINT8 ByteLane; |
| UINT16 CsEnabled; |
| BOOLEAN CGDDInit; |
| BOOLEAN SameDelayType; |
| |
| CGDD = 0; |
| CGDDInit = FALSE; |
| SameDelayType = (BOOLEAN) (TrnDly1 == TrnDly2); |
| CsEnabled = NBPtr->DCTPtr->Timings.CsEnabled; |
| |
| // If the two delay types compared are the same type, then no need to compare the same |
| // pair twice. Adjustments are made in the upper bound and lower bound of the loop to |
| // handle this. |
| for (Dimm1 = 0; Dimm1 < (SameDelayType ? (MAX_DIMMS_PER_CHANNEL - 1) : MAX_DIMMS_PER_CHANNEL); Dimm1 ++) { |
| if (CsEnabled & (UINT16) (3 << (Dimm1 << 1))) { |
| for (Dimm2 = (SameDelayType ? (Dimm1 + 1) : 0); Dimm2 < MAX_DIMMS_PER_CHANNEL; Dimm2 ++) { |
| if ((CsEnabled & (UINT16) (3 << (Dimm2 << 1)))) { |
| for (ByteLane = 0 ; ByteLane < 8 ; ByteLane++) { |
| // check each byte lane delay pair |
| GDD = (UINT8) (NBPtr->GetTrainDly (NBPtr, TrnDly1, DIMM_BYTE_ACCESS (Dimm1, ByteLane)) >> 5) - |
| (UINT8) (NBPtr->GetTrainDly (NBPtr, TrnDly2, DIMM_BYTE_ACCESS (Dimm2, ByteLane)) >> 5); |
| // If the 2 delay types to be compared are the same, then keep the absolute difference |
| if (SameDelayType && (GDD < 0)) { |
| GDD = (-GDD); |
| } |
| |
| // If CGDD is yet to be initialized, initialize it |
| // Otherwise, keep the largest difference so far |
| CGDD = (!CGDDInit) ? GDD : ((CGDD > GDD) ? CGDD : GDD); |
| if (!CGDDInit) { |
| CGDDInit = TRUE; |
| } |
| } |
| } |
| } |
| } |
| } |
| return CGDD; |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * This function calculates the critical delay difference (CDD) |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * @param[in] TrnDlyType1 - Type of first Gross Delay parameter |
| * @param[in] TrnDlyType2 - Type of second Gross Delay parameter |
| * @param[in] SameDimm - CDD of same DIMMs |
| * @param[in] DiffDimm - CDD of different DIMMs |
| * |
| * @return CDD term - in 1/2 MEMCLK |
| */ |
| INT16 |
| MemNCalcCDDNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr, |
| IN TRN_DLY_TYPE TrnDlyType1, |
| IN TRN_DLY_TYPE TrnDlyType2, |
| IN BOOLEAN SameDimm, |
| IN BOOLEAN DiffDimm |
| ) |
| { |
| INT16 CDD; |
| INT16 CDDtemp; |
| UINT16 TrnDly1; |
| UINT16 TrnDly2; |
| UINT8 i; |
| UINT8 j; |
| UINT8 ByteLane; |
| UINT16 CsEnabled; |
| BOOLEAN SameDlyType; |
| |
| SameDlyType = (BOOLEAN) (TrnDlyType1 == TrnDlyType2); |
| CsEnabled = NBPtr->DCTPtr->Timings.CsEnabled; |
| CDD = -32000; |
| // If the two delay types compared are the same type, then no need to compare the same |
| // pair twice. Adjustments are made in the upper bound and lower bound of the loop to |
| // handle this. |
| for (i = 0; i < (SameDlyType ? (MAX_DIMMS_PER_CHANNEL - 1) : MAX_DIMMS_PER_CHANNEL); i++) { |
| if ((CsEnabled & (UINT16) (3 << (i << 1))) != 0) { |
| for (j = SameDlyType ? (i + 1) : 0; j < MAX_DIMMS_PER_CHANNEL; j++) { |
| if (((CsEnabled & (UINT16) (3 << (j << 1))) != 0) && ((SameDimm && (i == j)) || (DiffDimm && (i != j)))) { |
| for (ByteLane = 0; ByteLane < ((NBPtr->MCTPtr->Status[SbEccDimms] && NBPtr->IsSupported[EccByteTraining]) ? 9 : 8); ByteLane++) { |
| /// @todo: Gross delay mask should not be constant. |
| TrnDly1 = GetTrainDlyFromHeapNb (NBPtr, TrnDlyType1, DIMM_BYTE_ACCESS (i, ByteLane)) >> 5; // Gross delay only |
| TrnDly2 = GetTrainDlyFromHeapNb (NBPtr, TrnDlyType2, DIMM_BYTE_ACCESS (j, ByteLane)) >> 5; // Gross delay only |
| |
| CDDtemp = TrnDly1 - TrnDly2; |
| // If the 2 delay types to be compared are the same, then keep the absolute difference |
| if ((SameDlyType) && (CDDtemp < 0)) { |
| CDDtemp = (-CDDtemp); |
| } |
| |
| CDD = (CDD < CDDtemp) ? CDDtemp : CDD; |
| } |
| } |
| } |
| } |
| } |
| |
| return CDD; |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * This function gets DQS timing from data saved in heap. |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * @param[in] TrnDlyType - type of delay to be set |
| * @param[in] Drbn - encoding of Dimm-Rank-Byte-Nibble to be accessed |
| * (use either DIMM_BYTE_ACCESS(dimm,byte) or CS_NBBL_ACCESS(cs,nibble) to use this encoding |
| * |
| * @return value of the target timing. |
| */ |
| UINT16 |
| GetTrainDlyFromHeapNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr, |
| IN TRN_DLY_TYPE TrnDlyType, |
| IN DRBN Drbn |
| ) |
| { |
| UINT8 Dimm; |
| UINT8 Byte; |
| UINT16 TrainDly; |
| CH_DEF_STRUCT *ChannelPtr; |
| MEM_TECH_BLOCK *TechPtr; |
| |
| Dimm = DRBN_DIMM (Drbn); |
| Byte = DRBN_BYTE (Drbn); |
| ChannelPtr = NBPtr->ChannelPtr; |
| TechPtr = NBPtr->TechPtr; |
| |
| ASSERT (Dimm < 4); |
| ASSERT (Byte <= ECC_DLY); |
| |
| switch (TrnDlyType) { |
| case AccessRcvEnDly: |
| TrainDly = ChannelPtr->RcvEnDlys[Dimm * TechPtr->DlyTableWidth () + Byte]; |
| break; |
| case AccessWrDqsDly: |
| TrainDly = ChannelPtr->WrDqsDlys[Dimm * TechPtr->DlyTableWidth () + Byte]; |
| break; |
| case AccessWrDatDly: |
| TrainDly = ChannelPtr->WrDatDlys[Dimm * TechPtr->DlyTableWidth () + Byte]; |
| break; |
| case AccessRdDqsDly: |
| TrainDly = ChannelPtr->RdDqsDlys[Dimm * TechPtr->DlyTableWidth () + Byte]; |
| break; |
| default: |
| TrainDly = 0; |
| IDS_ERROR_TRAP; |
| } |
| |
| return TrainDly; |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * This function sets the fixed MTRRs for common legacy ranges. |
| * It sets TOP_MEM and TOM2 and some variable MTRRs with WB Uncacheable type. |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| * @return TRUE - An Error value lower than AGESA_FATAL may have occurred |
| * @return FALSE - An Error value greater than or equal to AGESA_FATAL may have occurred |
| */ |
| |
| BOOLEAN |
| MemNCPUMemTypingNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| UINT32 Bottom32bIO; |
| UINT32 Bottom40bIO; |
| UINT32 Cache32bTOP; |
| S_UINT64 SMsr; |
| |
| MEM_DATA_STRUCT *MemPtr; |
| MEM_PARAMETER_STRUCT *RefPtr; |
| RefPtr = NBPtr->RefPtr; |
| MemPtr = NBPtr->MemPtr; |
| |
| // |
| //====================================================================== |
| // Set temporary top of memory from Node structure data. |
| // Adjust temp top of memory down to accommodate 32-bit IO space. |
| //====================================================================== |
| //Bottom40bIO=top of memory, right justified 16 bits (defines dram versus IO space type) |
| //Bottom32bIO=sub 4GB top of memory, right justified 16 bits (defines dram versus IO space type) |
| //Cache32bTOP=sub 4GB top of WB cacheable memory, right justified 16 bits |
| // |
| if (RefPtr->HoleBase != 0) { |
| Bottom32bIO = RefPtr->HoleBase; |
| } else if (RefPtr->BottomIo != 0) { |
| Bottom32bIO = (UINT32)RefPtr->BottomIo << (24 - 16); |
| } else { |
| Bottom32bIO = (UINT32)1 << (24 - 16); |
| } |
| |
| Cache32bTOP = RefPtr->SysLimit + 1; |
| if (Cache32bTOP < _4GB_RJ16) { |
| Bottom40bIO = 0; |
| if (Bottom32bIO >= Cache32bTOP) { |
| Bottom32bIO = Cache32bTOP; |
| } |
| } else { |
| Bottom40bIO = Cache32bTOP; |
| } |
| |
| Cache32bTOP = Bottom32bIO; |
| |
| |
| // |
| //====================================================================== |
| // Set default values for CPU registers |
| //====================================================================== |
| // |
| LibAmdMsrRead (SYS_CFG, (UINT64 *)&SMsr, &MemPtr->StdHeader); |
| SMsr.lo |= 0x1C0000; // turn on modification enable bit and |
| // mtrr enable bits |
| LibAmdMsrWrite (SYS_CFG, (UINT64 *)&SMsr, &MemPtr->StdHeader); |
| |
| SMsr.lo = SMsr.hi = 0x1E1E1E1E; |
| LibAmdMsrWrite (0x250, (UINT64 *)&SMsr, &MemPtr->StdHeader); // 0 - 512K = WB Mem |
| LibAmdMsrWrite (0x258, (UINT64 *)&SMsr, &MemPtr->StdHeader); // 512K - 640K = WB Mem |
| |
| // |
| //====================================================================== |
| // Set variable MTRR values |
| //====================================================================== |
| // |
| MemNSetMTRRrangeNb (NBPtr, 0, &Cache32bTOP, 0x200, 6); |
| |
| RefPtr->Sub4GCacheTop = Cache32bTOP << 16; |
| |
| // |
| //====================================================================== |
| // Set TOP_MEM and TOM2 CPU registers |
| //====================================================================== |
| // |
| SMsr.hi = Bottom32bIO >> (32 - 16); |
| SMsr.lo = Bottom32bIO << 16; |
| LibAmdMsrWrite (TOP_MEM, (UINT64 *)&SMsr, &MemPtr->StdHeader); |
| IDS_HDT_CONSOLE (MEM_FLOW, "TOP_MEM: %08x0000\n", Bottom32bIO); |
| |
| if (Bottom40bIO) { |
| SMsr.hi = Bottom40bIO >> (32 - 16); |
| SMsr.lo = Bottom40bIO << 16; |
| } else { |
| SMsr.hi = 0; |
| SMsr.lo = 0; |
| } |
| LibAmdMsrWrite (TOP_MEM2, (UINT64 *)&SMsr, &MemPtr->StdHeader); |
| |
| LibAmdMsrRead (SYS_CFG, (UINT64 *)&SMsr, &MemPtr->StdHeader); |
| if (Bottom40bIO) { |
| IDS_HDT_CONSOLE (MEM_FLOW, "TOP_MEM2: %08x0000\n", Bottom40bIO); |
| IDS_HDT_CONSOLE (MEM_FLOW, "Sub1THoleBase: %08x0000\n", RefPtr->Sub1THoleBase); |
| // Enable TOM2 |
| SMsr.lo |= 0x00600000; |
| } else { |
| // Disable TOM2 |
| SMsr.lo &= ~0x00600000; |
| } |
| SMsr.lo &= 0xFFF7FFFF; // turn off modification enable bit |
| LibAmdMsrWrite (SYS_CFG, (UINT64 *)&SMsr, &MemPtr->StdHeader); |
| |
| return (BOOLEAN) (NBPtr->MCTPtr->ErrCode < AGESA_FATAL); |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * This function runs on the BSP only, it sets the fixed MTRRs for common legacy ranges. |
| * It sets TOP_MEM and TOM2 and some variable MTRRs with WB Uncacheable type. |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| */ |
| |
| VOID |
| MemNUMAMemTypingNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| UINT32 Bottom32bIO; |
| UINT32 Bottom32bUMA; |
| UINT32 Cache32bTOP; |
| UINT32 Value32; |
| UINT8 BitCount; |
| UINT8 i; |
| |
| MEM_PARAMETER_STRUCT *RefPtr; |
| RefPtr = NBPtr->RefPtr; |
| BitCount = 0; |
| // |
| //====================================================================== |
| // Adjust temp top of memory down to accommodate UMA memory start |
| //====================================================================== |
| // Bottom32bIO=sub 4GB top of memory, right justified 16 bits (defines dram versus IO space type) |
| // Cache32bTOP=sub 4GB top of WB cacheable memory, right justified 16 bits |
| // |
| Bottom32bIO = RefPtr->Sub4GCacheTop >> 16; |
| Bottom32bUMA = RefPtr->UmaBase; |
| |
| if (Bottom32bUMA < Bottom32bIO) { |
| Cache32bTOP = Bottom32bUMA; |
| RefPtr->Sub4GCacheTop = Bottom32bUMA << 16; |
| // |
| //====================================================================== |
| //Set variable MTRR values |
| //====================================================================== |
| // |
| Value32 = Cache32bTOP; |
| //Pre-check the bit count of bottom Uma to see if it is potentially running out of Mtrr while typing. |
| while (Value32 != 0) { |
| i = LibAmdBitScanForward (Value32); |
| Value32 &= ~ (1 << i); |
| BitCount++; |
| } |
| |
| if (BitCount > 5) { |
| NBPtr->RefPtr->GStatus[GsbMTRRshort] = TRUE; |
| MemNSetMTRRUmaRegionUCNb (NBPtr, &Cache32bTOP, &Bottom32bIO); |
| } else { |
| MemNSetMTRRrangeNb (NBPtr, 0, &Cache32bTOP, 0x200, 6); |
| } |
| } |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * Program MTRRs to describe given range as given cache type. Use MTRR pairs |
| * starting with the given MTRRphys Base address, and use as many as is |
| * required up to (excluding) MSR 020C, which is reserved for OS. |
| * |
| * "Limit" in the context of this procedure is not the numerically correct |
| * limit, but rather the Last address+1, for purposes of coding efficiency |
| * and readability. Size of a region is then Limit-Base. |
| * |
| * 1. Size of each range must be a power of two |
| * 2. Each range must be naturally aligned (Base is same as size) |
| * |
| * There are two code paths: the ascending path and descending path (analogous |
| * to bsf and bsr), where the next limit is a function of the next set bit in |
| * a forward or backward sequence of bits (as a function of the Limit). We |
| * start with the ascending path, to ensure that regions are naturally aligned, |
| * then we switch to the descending path to maximize MTRR usage efficiency. |
| * Base=0 is a special case where we start with the descending path. |
| * Correct Mask for region is 2comp(Size-1)-1, |
| * which is 2comp(Limit-Base-1)-1 * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * @param[in] Base - Base address[47:16] of specified range. |
| * @param[in] *LimitPtr - Limit address[47:16] of specified range. |
| * @param[in] MtrrAddr - address of var MTRR pair to start using. |
| * @param[in] MtrrType - Cache type for the range. |
| * |
| * @return TRUE - No failure occurred |
| * @return FALSE - Failure occurred because run out of variable-size MTRRs before completion. |
| */ |
| |
| BOOLEAN |
| STATIC |
| MemNSetMTRRrangeNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr, |
| IN UINT32 Base, |
| IN OUT UINT32 *LimitPtr, |
| IN UINT32 MtrrAddr, |
| IN UINT8 MtrrType |
| ) |
| { |
| S_UINT64 SMsr; |
| UINT32 CurBase; |
| UINT32 CurLimit; |
| UINT32 CurSize; |
| UINT32 CurAddr; |
| UINT32 Value32; |
| |
| CurBase = Base; |
| CurLimit = *LimitPtr; |
| CurAddr = MtrrAddr; |
| |
| while ((CurAddr >= 0x200) && (CurAddr < 0x20A) && (CurBase < *LimitPtr)) { |
| CurSize = CurLimit = (UINT32)1 << LibAmdBitScanForward (CurBase); |
| CurLimit += CurBase; |
| if ((CurBase == 0) || (*LimitPtr < CurLimit)) { |
| CurLimit = *LimitPtr - CurBase; |
| CurSize = CurLimit = (UINT32)1 << LibAmdBitScanReverse (CurLimit); |
| CurLimit += CurBase; |
| } |
| |
| // prog. MTRR with current region Base |
| SMsr.lo = (CurBase << 16) | (UINT32)MtrrType; |
| SMsr.hi = CurBase >> (32 - 16); |
| LibAmdMsrWrite (CurAddr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader); |
| |
| // prog. MTRR with current region Mask |
| CurAddr++; // other half of MSR pair |
| Value32 = CurSize - (UINT32)1; |
| Value32 = ~Value32; |
| SMsr.hi = (Value32 >> (32 - 16)) & NBPtr->VarMtrrHiMsk; |
| SMsr.lo = (Value32 << 16) | ((UINT32)1 << MTRR_VALID); |
| LibAmdMsrWrite (CurAddr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader); |
| |
| CurBase = CurLimit; |
| CurAddr++; // next MSR pair |
| } |
| |
| if (CurLimit < *LimitPtr) { |
| // Announce failure |
| *LimitPtr = CurLimit; |
| IDS_ERROR_TRAP; |
| } |
| |
| while ((CurAddr >= 0x200) && (CurAddr < 0x20C)) { |
| SMsr.lo = SMsr.hi = 0; |
| LibAmdMsrWrite (CurAddr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader); |
| CurAddr++; |
| } |
| |
| return TRUE; |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * Program one MTRR to describe Uma region as UC cache type if we detect running out of |
| * Mtrr circumstance. |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * @param[in] *BasePtr - Base address[47:24] of specified range. |
| * @param[in] *LimitPtr - Limit address[47:24] of specified range. |
| * |
| * @return TRUE - No fatal error occurs. |
| * @return FALSE - Fatal error occurs. |
| */ |
| BOOLEAN |
| MemNSetMTRRUmaRegionUCNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr, |
| IN UINT32 *BasePtr, |
| IN OUT UINT32 *LimitPtr |
| ) |
| { |
| S_UINT64 SMsr; |
| UINT32 Mtrr; |
| UINT32 Size; |
| UINT32 Value32; |
| |
| Size = *LimitPtr - *BasePtr; |
| // Check if Size is a power of 2 |
| if ((Size & (Size - 1)) != 0) { |
| for (Mtrr = 0x200; Mtrr < 0x20A; Mtrr += 2) { |
| LibAmdMsrRead (Mtrr + 1, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader); |
| if ((SMsr.lo & ((UINT32) 1 << 11)) == 0) { |
| MemNSetMTRRrangeNb (NBPtr, *BasePtr, LimitPtr, Mtrr, 0); |
| break; |
| } |
| } |
| if (Mtrr == 0x20A) { |
| // Run out of MTRRs |
| IDS_ERROR_TRAP; |
| } |
| } else { |
| Mtrr = 0x20A; //Reserved pair of MTRR for UMA region. |
| |
| // prog. MTRR with current region Base |
| SMsr.lo = *BasePtr << 16; |
| SMsr.hi = *BasePtr >> (32 - 16); |
| LibAmdMsrWrite (Mtrr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader); |
| |
| // prog. MTRR with current region Mask |
| Mtrr++; // other half of MSR pair |
| Value32 = Size - (UINT32)1; |
| Value32 = ~Value32; |
| SMsr.hi = (Value32 >> (32 - 16)) & NBPtr->VarMtrrHiMsk; |
| SMsr.lo = (Value32 << 16) | ((UINT32)1 << MTRR_VALID); |
| LibAmdMsrWrite (Mtrr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader); |
| } |
| |
| return TRUE; |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * Report the Uma size that is going to be allocated. |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| * @return Uma size [31:0] = Addr [47:16] |
| */ |
| UINT32 |
| MemNGetUmaSizeNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| return 0; |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * This function allocates 16MB of memory for C6 storage when it is requested to be enabled |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| */ |
| VOID |
| MemNAllocateC6StorageClientNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| UINT32 SysLimit; |
| |
| if (IsFeatureEnabled (C6Cstate, NBPtr->MemPtr->PlatFormConfig, &(NBPtr->MemPtr->StdHeader))) { |
| SysLimit = NBPtr->RefPtr->SysLimit; |
| SysLimit -= _16MB_RJ16; |
| |
| // Set Dram Limit |
| NBPtr->MCTPtr->NodeSysLimit = SysLimit; |
| NBPtr->RefPtr->SysLimit = SysLimit; |
| MemNSetBitFieldNb (NBPtr, BFDramLimitReg0, ((SysLimit << 8) & 0xFFFF0000)); |
| |
| // Set TOPMEM and MTRRs |
| MemNC6AdjustMSRs (NBPtr); |
| |
| // Set C6Base |
| MemNSetBitFieldNb (NBPtr, BFC6Base, (SysLimit + 1) >> (24 - 16)); |
| |
| // C6DramLock will be set in FinalizeMCT |
| } |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * This function allocates 16MB of memory for C6 storage when it is requested to be enabled |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| */ |
| VOID |
| MemNAllocateC6StorageUnb ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| UINT8 Node; |
| UINT32 SysLimit; |
| UINT32 DramLimitReg; |
| |
| if (NBPtr->SharedPtr->C6Enabled || IsFeatureEnabled (C6Cstate, NBPtr->MemPtr->PlatFormConfig, &(NBPtr->MemPtr->StdHeader))) { |
| |
| SysLimit = NBPtr->RefPtr->SysLimit; |
| |
| // Calculate new SysLimit |
| if (!NBPtr->SharedPtr->C6Enabled) { |
| if (NBPtr->SharedPtr->NodeIntlv.NodeCnt >= 2) { |
| // Node Interleave is enabled, system memory available is reduced by 16MB * number of nodes |
| SysLimit -= _16MB_RJ16 * NBPtr->SharedPtr->NodeIntlv.NodeCnt; |
| } else { |
| // Otherwise, system memory available is reduced by 16MB |
| SysLimit -= _16MB_RJ16; |
| } |
| NBPtr->RefPtr->SysLimit = SysLimit; |
| NBPtr->SharedPtr->C6Enabled = TRUE; |
| |
| // Set TOPMEM and MTRRs (only need to be done once for BSC) |
| MemNC6AdjustMSRs (NBPtr); |
| } |
| |
| // Set Dram Limit |
| if (NBPtr->SharedPtr->NodeIntlv.NodeCnt >= 2) { |
| for (Node = 0; Node < NBPtr->NodeCount; Node++) { |
| DramLimitReg = MemNGetBitFieldNb (NBPtr, BFDramLimitReg0 + Node); |
| if ((DramLimitReg & 0xFFFF0000) != 0) { |
| MemNSetBitFieldNb (NBPtr, BFDramLimitReg0 + Node, ((SysLimit << 8) & 0xFFFF0000) | (DramLimitReg & 0xFFFF)); |
| MemNSetBitFieldNb (NBPtr, BFDramLimitHiReg0 + Node, SysLimit >> 24); |
| } |
| } |
| // Node Interleave is enabled, CoreStateSaveDestNode points to its own node |
| MemNSetBitFieldNb (NBPtr, BFCoreStateSaveDestNode, NBPtr->Node); |
| NBPtr->MCTPtr->NodeSysLimit = SysLimit; |
| } else { |
| DramLimitReg = MemNGetBitFieldNb (NBPtr, BFDramLimitReg0 + NBPtr->SharedPtr->TopNode) & 0x0000FFFF; |
| MemNSetBitFieldNb (NBPtr, BFDramLimitReg0 + NBPtr->SharedPtr->TopNode, ((SysLimit << 8) & 0xFFFF0000) | DramLimitReg); |
| MemNSetBitFieldNb (NBPtr, BFDramLimitHiReg0 + NBPtr->SharedPtr->TopNode, SysLimit >> 24); |
| |
| // Node Interleave is not enabled, CoreStateSaveDestNode points to the node that contains top memory |
| MemNSetBitFieldNb (NBPtr, BFCoreStateSaveDestNode, NBPtr->SharedPtr->TopNode); |
| |
| if (NBPtr->Node == NBPtr->SharedPtr->TopNode) { |
| NBPtr->MCTPtr->NodeSysLimit = SysLimit; |
| } |
| } |
| |
| // Set BFCC6SaveEn |
| MemNSetBitFieldNb (NBPtr, BFCC6SaveEn, 1); |
| |
| // LockDramCfg will be set in FinalizeMCT |
| } |
| } |
| |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * This function readjusts TOPMEM and MTRRs after allocating storage for C6 |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * |
| */ |
| VOID |
| MemNC6AdjustMSRs ( |
| IN OUT MEM_NB_BLOCK *NBPtr |
| ) |
| { |
| UINT32 SysLimit; |
| UINT32 CurAddr; |
| S_UINT64 SMsr; |
| |
| SysLimit = NBPtr->RefPtr->SysLimit + 1; |
| SMsr.hi = SysLimit >> (32 - 16); |
| SMsr.lo = SysLimit << 16; |
| if (SysLimit < _4GB_RJ16) { |
| LibAmdMsrWrite (TOP_MEM, (UINT64 *)&SMsr, &(NBPtr->MemPtr->StdHeader)); |
| IDS_HDT_CONSOLE (MEM_FLOW, "TOP_MEM: %08x0000\n", SysLimit); |
| // If there is no UMA buffer, then set top of cache and MTRR. |
| // Otherwise, top of cache and MTRR will be set when UMA buffer is set up. |
| if (NBPtr->RefPtr->UmaMode == UMA_NONE) { |
| NBPtr->RefPtr->Sub4GCacheTop = (SysLimit << 16); |
| // Find unused MTRR to set C6 region to UC |
| for (CurAddr = 0x200; CurAddr < 0x20C; CurAddr += 2) { |
| LibAmdMsrRead (CurAddr + 1, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader); |
| if ((SMsr.lo & ((UINT32) 1 << 11)) == 0) { |
| // Set region base as TOM |
| SMsr.hi = SysLimit >> (32 - 16); |
| SMsr.lo = SysLimit << 16; |
| LibAmdMsrWrite (CurAddr, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader); |
| |
| // set region mask to 16MB |
| SMsr.hi = NBPtr->VarMtrrHiMsk; |
| SMsr.lo = 0xFF000800; |
| LibAmdMsrWrite (CurAddr + 1, (UINT64 *)&SMsr, &NBPtr->MemPtr->StdHeader); |
| |
| break; |
| } |
| } |
| } |
| } else { |
| LibAmdMsrWrite (TOP_MEM2, (UINT64 *)&SMsr, &(NBPtr->MemPtr->StdHeader)); |
| IDS_HDT_CONSOLE (MEM_FLOW, "TOP_MEM2: %08x0000\n", SysLimit); |
| } |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * Family-specific hook to override the DdrMaxRate value for families with a |
| * non-GH-compatible encoding for BFDdrMaxRate |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * @param[in,out] *DdrMaxRate - Void pointer to DdrMaxRate. Used as INT16. |
| * |
| * @return TRUE |
| * |
| */ |
| BOOLEAN |
| MemNGetMaxDdrRateUnb ( |
| IN OUT MEM_NB_BLOCK *NBPtr, |
| IN VOID *DdrMaxRate |
| ) |
| { |
| UINT8 DdrMaxRateEncoded; |
| |
| DdrMaxRateEncoded = (UINT8) MemNGetBitFieldNb (NBPtr, BFDdrMaxRate); |
| |
| if (DdrMaxRateEncoded == 0) { |
| * (UINT16 *) DdrMaxRate = UNSUPPORTED_DDR_FREQUENCY; |
| } else { |
| * (UINT16 *) DdrMaxRate = MemNGetMemClkFreqUnb (NBPtr, DdrMaxRateEncoded); |
| } |
| return TRUE; |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * This function performs the action after save/restore execution |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * @param[in,out] OptParam - Optional parameter |
| * |
| * @return TRUE |
| * |
| */ |
| |
| BOOLEAN |
| MemNAfterSaveRestoreUnb ( |
| IN OUT MEM_NB_BLOCK *NBPtr, |
| IN OUT VOID *OptParam |
| ) |
| { |
| // Sync. up DctCfgSel value with NBPtr->Dct |
| MemNSetBitFieldNb (NBPtr, BFDctCfgSel, NBPtr->Dct); |
| |
| return TRUE; |
| } |
| |
| /* -----------------------------------------------------------------------------*/ |
| /** |
| * |
| * |
| * This function performs the action before and after excluding dimms on CNB |
| * |
| * @param[in,out] *NBPtr - Pointer to the MEM_NB_BLOCK |
| * @param[in,out] *IsBefore - If the function is called before excluding dimms |
| * |
| * @return TRUE |
| * |
| */ |
| |
| BOOLEAN |
| MemNBfAfExcludeDimmClientNb ( |
| IN OUT MEM_NB_BLOCK *NBPtr, |
| IN OUT VOID *IsBefore |
| ) |
| { |
| if (*(BOOLEAN *) IsBefore == TRUE) { |
| NBPtr->BrdcstSet (NBPtr, BFEnterSelfRef, 1); |
| NBPtr->PollBitField (NBPtr, BFEnterSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE); |
| } else { |
| NBPtr->BrdcstSet (NBPtr, BFExitSelfRef, 1); |
| NBPtr->PollBitField (NBPtr, BFExitSelfRef, 0, PCI_ACCESS_TIMEOUT, TRUE); |
| } |
| |
| return TRUE; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| * LOCAL FUNCTIONS |
| * |
| *---------------------------------------------------------------------------- |
| */ |