| /* |
| * Copyright (c) 2011 The Chromium OS Authors. |
| * Copyright (C) 2009, 2010 Carl-Daniel Hailfinger |
| * Copyright (C) 2011 Stefan Tauner |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 of |
| * the License, or (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but without any warranty; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| */ |
| |
| /* This file is derived from the flashrom project. */ |
| #include <stdint.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <compiler.h> |
| #include <bootstate.h> |
| #include <commonlib/helpers.h> |
| #include <delay.h> |
| #include <arch/io.h> |
| #include <console/console.h> |
| #include <device/pci_ids.h> |
| #include <device/pci.h> |
| #include <spi_flash.h> |
| |
| #include <spi-generic.h> |
| |
| #define HSFC_FCYCLE_OFF 1 /* 1-2: FLASH Cycle */ |
| #define HSFC_FCYCLE (0x3 << HSFC_FCYCLE_OFF) |
| #define HSFC_FDBC_OFF 8 /* 8-13: Flash Data Byte Count */ |
| #define HSFC_FDBC (0x3f << HSFC_FDBC_OFF) |
| |
| |
| #ifdef __SMM__ |
| #include <arch/io.h> |
| #define pci_read_config_byte(dev, reg, targ)\ |
| *(targ) = pci_read_config8(dev, reg) |
| #define pci_read_config_word(dev, reg, targ)\ |
| *(targ) = pci_read_config16(dev, reg) |
| #define pci_read_config_dword(dev, reg, targ)\ |
| *(targ) = pci_read_config32(dev, reg) |
| #define pci_write_config_byte(dev, reg, val)\ |
| pci_write_config8(dev, reg, val) |
| #define pci_write_config_word(dev, reg, val)\ |
| pci_write_config16(dev, reg, val) |
| #define pci_write_config_dword(dev, reg, val)\ |
| pci_write_config32(dev, reg, val) |
| #else /* !__SMM__ */ |
| #include <device/device.h> |
| #include <device/pci.h> |
| #define pci_read_config_byte(dev, reg, targ)\ |
| *(targ) = pci_read_config8(dev, reg) |
| #define pci_read_config_word(dev, reg, targ)\ |
| *(targ) = pci_read_config16(dev, reg) |
| #define pci_read_config_dword(dev, reg, targ)\ |
| *(targ) = pci_read_config32(dev, reg) |
| #define pci_write_config_byte(dev, reg, val)\ |
| pci_write_config8(dev, reg, val) |
| #define pci_write_config_word(dev, reg, val)\ |
| pci_write_config16(dev, reg, val) |
| #define pci_write_config_dword(dev, reg, val)\ |
| pci_write_config32(dev, reg, val) |
| #endif /* !__SMM__ */ |
| |
| static int spi_is_multichip(void); |
| |
| typedef struct spi_slave ich_spi_slave; |
| |
| static int ichspi_lock = 0; |
| |
| typedef struct ich7_spi_regs { |
| uint16_t spis; |
| uint16_t spic; |
| uint32_t spia; |
| uint64_t spid[8]; |
| uint64_t _pad; |
| uint32_t bbar; |
| uint16_t preop; |
| uint16_t optype; |
| uint8_t opmenu[8]; |
| uint32_t pbr[3]; |
| } __packed ich7_spi_regs; |
| |
| typedef struct ich9_spi_regs { |
| uint32_t bfpr; |
| uint16_t hsfs; |
| uint16_t hsfc; |
| uint32_t faddr; |
| uint32_t _reserved0; |
| uint32_t fdata[16]; |
| uint32_t frap; |
| uint32_t freg[5]; |
| uint32_t _reserved1[3]; |
| uint32_t pr[5]; |
| uint32_t _reserved2[2]; |
| uint8_t ssfs; |
| uint8_t ssfc[3]; |
| uint16_t preop; |
| uint16_t optype; |
| uint8_t opmenu[8]; |
| uint32_t bbar; |
| uint8_t _reserved3[12]; |
| uint32_t fdoc; |
| uint32_t fdod; |
| uint8_t _reserved4[8]; |
| uint32_t afc; |
| uint32_t lvscc; |
| uint32_t uvscc; |
| uint8_t _reserved5[4]; |
| uint32_t fpb; |
| uint8_t _reserved6[28]; |
| uint32_t srdl; |
| uint32_t srdc; |
| uint32_t srd; |
| } __packed ich9_spi_regs; |
| |
| typedef struct ich_spi_controller { |
| int locked; |
| uint32_t flmap0; |
| uint32_t hsfs; |
| |
| ich9_spi_regs *ich9_spi; |
| uint8_t *opmenu; |
| int menubytes; |
| uint16_t *preop; |
| uint16_t *optype; |
| uint32_t *addr; |
| uint8_t *data; |
| unsigned databytes; |
| uint8_t *status; |
| uint16_t *control; |
| uint32_t *bbar; |
| uint32_t *fpr; |
| uint8_t fpr_max; |
| } ich_spi_controller; |
| |
| static ich_spi_controller cntlr; |
| |
| enum { |
| SPIS_SCIP = 0x0001, |
| SPIS_GRANT = 0x0002, |
| SPIS_CDS = 0x0004, |
| SPIS_FCERR = 0x0008, |
| SSFS_AEL = 0x0010, |
| SPIS_LOCK = 0x8000, |
| SPIS_RESERVED_MASK = 0x7ff0, |
| SSFS_RESERVED_MASK = 0x7fe2 |
| }; |
| |
| enum { |
| SPIC_SCGO = 0x000002, |
| SPIC_ACS = 0x000004, |
| SPIC_SPOP = 0x000008, |
| SPIC_DBC = 0x003f00, |
| SPIC_DS = 0x004000, |
| SPIC_SME = 0x008000, |
| SSFC_SCF_MASK = 0x070000, |
| SSFC_RESERVED = 0xf80000 |
| }; |
| |
| enum { |
| HSFS_FDONE = 0x0001, |
| HSFS_FCERR = 0x0002, |
| HSFS_AEL = 0x0004, |
| HSFS_BERASE_MASK = 0x0018, |
| HSFS_BERASE_SHIFT = 3, |
| HSFS_SCIP = 0x0020, |
| HSFS_FDOPSS = 0x2000, |
| HSFS_FDV = 0x4000, |
| HSFS_FLOCKDN = 0x8000 |
| }; |
| |
| enum { |
| HSFC_FGO = 0x0001, |
| HSFC_FCYCLE_MASK = 0x0006, |
| HSFC_FCYCLE_SHIFT = 1, |
| HSFC_FDBC_MASK = 0x3f00, |
| HSFC_FDBC_SHIFT = 8, |
| HSFC_FSMIE = 0x8000 |
| }; |
| |
| enum { |
| SPI_OPCODE_TYPE_READ_NO_ADDRESS = 0, |
| SPI_OPCODE_TYPE_WRITE_NO_ADDRESS = 1, |
| SPI_OPCODE_TYPE_READ_WITH_ADDRESS = 2, |
| SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS = 3 |
| }; |
| |
| #if IS_ENABLED(CONFIG_DEBUG_SPI_FLASH) |
| |
| static u8 readb_(const void *addr) |
| { |
| u8 v = read8(addr); |
| printk(BIOS_DEBUG, "read %2.2x from %4.4x\n", |
| v, ((unsigned) addr & 0xffff) - 0xf020); |
| return v; |
| } |
| |
| static u16 readw_(const void *addr) |
| { |
| u16 v = read16(addr); |
| printk(BIOS_DEBUG, "read %4.4x from %4.4x\n", |
| v, ((unsigned) addr & 0xffff) - 0xf020); |
| return v; |
| } |
| |
| static u32 readl_(const void *addr) |
| { |
| u32 v = read32(addr); |
| printk(BIOS_DEBUG, "read %8.8x from %4.4x\n", |
| v, ((unsigned) addr & 0xffff) - 0xf020); |
| return v; |
| } |
| |
| static void writeb_(u8 b, void *addr) |
| { |
| write8(addr, b); |
| printk(BIOS_DEBUG, "wrote %2.2x to %4.4x\n", |
| b, ((unsigned) addr & 0xffff) - 0xf020); |
| } |
| |
| static void writew_(u16 b, void *addr) |
| { |
| write16(addr, b); |
| printk(BIOS_DEBUG, "wrote %4.4x to %4.4x\n", |
| b, ((unsigned) addr & 0xffff) - 0xf020); |
| } |
| |
| static void writel_(u32 b, void *addr) |
| { |
| write32(addr, b); |
| printk(BIOS_DEBUG, "wrote %8.8x to %4.4x\n", |
| b, ((unsigned) addr & 0xffff) - 0xf020); |
| } |
| |
| #else /* CONFIG_DEBUG_SPI_FLASH ^^^ enabled vvv NOT enabled */ |
| |
| #define readb_(a) read8(a) |
| #define readw_(a) read16(a) |
| #define readl_(a) read32(a) |
| #define writeb_(val, addr) write8(addr, val) |
| #define writew_(val, addr) write16(addr, val) |
| #define writel_(val, addr) write32(addr, val) |
| |
| #endif /* CONFIG_DEBUG_SPI_FLASH ^^^ NOT enabled */ |
| |
| static void write_reg(const void *value, void *dest, uint32_t size) |
| { |
| const uint8_t *bvalue = value; |
| uint8_t *bdest = dest; |
| |
| while (size >= 4) { |
| writel_(*(const uint32_t *)bvalue, bdest); |
| bdest += 4; bvalue += 4; size -= 4; |
| } |
| while (size) { |
| writeb_(*bvalue, bdest); |
| bdest++; bvalue++; size--; |
| } |
| } |
| |
| static void read_reg(const void *src, void *value, uint32_t size) |
| { |
| const uint8_t *bsrc = src; |
| uint8_t *bvalue = value; |
| |
| while (size >= 4) { |
| *(uint32_t *)bvalue = readl_(bsrc); |
| bsrc += 4; bvalue += 4; size -= 4; |
| } |
| while (size) { |
| *bvalue = readb_(bsrc); |
| bsrc++; bvalue++; size--; |
| } |
| } |
| |
| static void ich_set_bbar(uint32_t minaddr) |
| { |
| const uint32_t bbar_mask = 0x00ffff00; |
| uint32_t ichspi_bbar; |
| |
| minaddr &= bbar_mask; |
| ichspi_bbar = readl_(cntlr.bbar) & ~bbar_mask; |
| ichspi_bbar |= minaddr; |
| writel_(ichspi_bbar, cntlr.bbar); |
| } |
| |
| void spi_init(void) |
| { |
| uint8_t *rcrb; /* Root Complex Register Block */ |
| uint32_t rcba; /* Root Complex Base Address */ |
| uint8_t bios_cntl; |
| device_t dev; |
| ich9_spi_regs *ich9_spi; |
| ich7_spi_regs *ich7_spi; |
| uint16_t hsfs; |
| |
| #ifdef __SMM__ |
| dev = PCI_DEV(0, 31, 0); |
| #else |
| dev = dev_find_slot(0, PCI_DEVFN(31, 0)); |
| #endif |
| |
| pci_read_config_dword(dev, 0xf0, &rcba); |
| /* Bits 31-14 are the base address, 13-1 are reserved, 0 is enable. */ |
| rcrb = (uint8_t *)(rcba & 0xffffc000); |
| if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX)) { |
| ich7_spi = (ich7_spi_regs *)(rcrb + 0x3020); |
| cntlr.opmenu = ich7_spi->opmenu; |
| cntlr.menubytes = sizeof(ich7_spi->opmenu); |
| cntlr.optype = &ich7_spi->optype; |
| cntlr.addr = &ich7_spi->spia; |
| cntlr.data = (uint8_t *)ich7_spi->spid; |
| cntlr.databytes = sizeof(ich7_spi->spid); |
| cntlr.status = (uint8_t *)&ich7_spi->spis; |
| ichspi_lock = readw_(&ich7_spi->spis) & HSFS_FLOCKDN; |
| cntlr.control = &ich7_spi->spic; |
| cntlr.bbar = &ich7_spi->bbar; |
| cntlr.preop = &ich7_spi->preop; |
| cntlr.fpr = &ich7_spi->pbr[0]; |
| cntlr.fpr_max = 3; |
| } else { |
| ich9_spi = (ich9_spi_regs *)(rcrb + 0x3800); |
| cntlr.ich9_spi = ich9_spi; |
| hsfs = readw_(&ich9_spi->hsfs); |
| ichspi_lock = hsfs & HSFS_FLOCKDN; |
| cntlr.hsfs = hsfs; |
| cntlr.opmenu = ich9_spi->opmenu; |
| cntlr.menubytes = sizeof(ich9_spi->opmenu); |
| cntlr.optype = &ich9_spi->optype; |
| cntlr.addr = &ich9_spi->faddr; |
| cntlr.data = (uint8_t *)ich9_spi->fdata; |
| cntlr.databytes = sizeof(ich9_spi->fdata); |
| cntlr.status = &ich9_spi->ssfs; |
| cntlr.control = (uint16_t *)ich9_spi->ssfc; |
| cntlr.bbar = &ich9_spi->bbar; |
| cntlr.preop = &ich9_spi->preop; |
| cntlr.fpr = &ich9_spi->pr[0]; |
| cntlr.fpr_max = 5; |
| |
| if (cntlr.hsfs & HSFS_FDV) { |
| writel_ (4, &ich9_spi->fdoc); |
| cntlr.flmap0 = readl_(&ich9_spi->fdod); |
| } |
| } |
| |
| ich_set_bbar(0); |
| |
| /* Disable the BIOS write protect so write commands are allowed. */ |
| pci_read_config_byte(dev, 0xdc, &bios_cntl); |
| /* Deassert SMM BIOS Write Protect Disable. */ |
| bios_cntl &= ~(1 << 5); |
| pci_write_config_byte(dev, 0xdc, bios_cntl | 0x1); |
| } |
| |
| static void spi_init_cb(void *unused) |
| { |
| spi_init(); |
| } |
| |
| BOOT_STATE_INIT_ENTRY(BS_DEV_INIT, BS_ON_ENTRY, spi_init_cb, NULL); |
| |
| typedef struct spi_transaction { |
| const uint8_t *out; |
| uint32_t bytesout; |
| uint8_t *in; |
| uint32_t bytesin; |
| uint8_t type; |
| uint8_t opcode; |
| uint32_t offset; |
| } spi_transaction; |
| |
| static inline void spi_use_out(spi_transaction *trans, unsigned bytes) |
| { |
| trans->out += bytes; |
| trans->bytesout -= bytes; |
| } |
| |
| static inline void spi_use_in(spi_transaction *trans, unsigned bytes) |
| { |
| trans->in += bytes; |
| trans->bytesin -= bytes; |
| } |
| |
| static void spi_setup_type(spi_transaction *trans) |
| { |
| trans->type = 0xFF; |
| |
| /* Try to guess spi type from read/write sizes. */ |
| if (trans->bytesin == 0) { |
| if (trans->bytesout > 4) |
| /* |
| * If bytesin = 0 and bytesout > 4, we presume this is |
| * a write data operation, which is accompanied by an |
| * address. |
| */ |
| trans->type = SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS; |
| else |
| trans->type = SPI_OPCODE_TYPE_WRITE_NO_ADDRESS; |
| return; |
| } |
| |
| if (trans->bytesout == 1) { /* and bytesin is > 0 */ |
| trans->type = SPI_OPCODE_TYPE_READ_NO_ADDRESS; |
| return; |
| } |
| |
| if (trans->bytesout == 4) { /* and bytesin is > 0 */ |
| trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; |
| } |
| |
| /* Fast read command is called with 5 bytes instead of 4 */ |
| if (trans->out[0] == SPI_OPCODE_FAST_READ && trans->bytesout == 5) { |
| trans->type = SPI_OPCODE_TYPE_READ_WITH_ADDRESS; |
| --trans->bytesout; |
| } |
| } |
| |
| static int spi_setup_opcode(spi_transaction *trans) |
| { |
| uint16_t optypes; |
| uint8_t opmenu[cntlr.menubytes]; |
| |
| trans->opcode = trans->out[0]; |
| spi_use_out(trans, 1); |
| if (!ichspi_lock) { |
| /* The lock is off, so just use index 0. */ |
| writeb_(trans->opcode, cntlr.opmenu); |
| optypes = readw_(cntlr.optype); |
| optypes = (optypes & 0xfffc) | (trans->type & 0x3); |
| writew_(optypes, cntlr.optype); |
| return 0; |
| } else { |
| /* The lock is on. See if what we need is on the menu. */ |
| uint8_t optype; |
| uint16_t opcode_index; |
| |
| /* Write Enable is handled as atomic prefix */ |
| if (trans->opcode == SPI_OPCODE_WREN) |
| return 0; |
| |
| read_reg(cntlr.opmenu, opmenu, sizeof(opmenu)); |
| for (opcode_index = 0; opcode_index < cntlr.menubytes; |
| opcode_index++) { |
| if (opmenu[opcode_index] == trans->opcode) |
| break; |
| } |
| |
| if (opcode_index == cntlr.menubytes) { |
| printk(BIOS_DEBUG, "ICH SPI: Opcode %x not found\n", |
| trans->opcode); |
| return -1; |
| } |
| |
| optypes = readw_(cntlr.optype); |
| optype = (optypes >> (opcode_index * 2)) & 0x3; |
| if (trans->type == SPI_OPCODE_TYPE_WRITE_NO_ADDRESS && |
| optype == SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS && |
| trans->bytesout >= 3) { |
| /* We guessed wrong earlier. Fix it up. */ |
| trans->type = optype; |
| } |
| if (optype != trans->type) { |
| printk(BIOS_DEBUG, "ICH SPI: Transaction doesn't fit type %d\n", |
| optype); |
| return -1; |
| } |
| return opcode_index; |
| } |
| } |
| |
| static int spi_setup_offset(spi_transaction *trans) |
| { |
| /* Separate the SPI address and data. */ |
| switch (trans->type) { |
| case SPI_OPCODE_TYPE_READ_NO_ADDRESS: |
| case SPI_OPCODE_TYPE_WRITE_NO_ADDRESS: |
| return 0; |
| case SPI_OPCODE_TYPE_READ_WITH_ADDRESS: |
| case SPI_OPCODE_TYPE_WRITE_WITH_ADDRESS: |
| trans->offset = ((uint32_t)trans->out[0] << 16) | |
| ((uint32_t)trans->out[1] << 8) | |
| ((uint32_t)trans->out[2] << 0); |
| spi_use_out(trans, 3); |
| return 1; |
| default: |
| printk(BIOS_DEBUG, "Unrecognized SPI transaction type %#x\n", trans->type); |
| return -1; |
| } |
| } |
| |
| /* |
| * Wait for up to 6s til status register bit(s) turn 1 (in case wait_til_set |
| * below is True) or 0. In case the wait was for the bit(s) to set - write |
| * those bits back, which would cause resetting them. |
| * |
| * Return the last read status value on success or -1 on failure. |
| */ |
| static int ich_status_poll(u16 bitmask, int wait_til_set) |
| { |
| int timeout = 600000; /* This will result in 6 seconds */ |
| u16 status = 0; |
| |
| while (timeout--) { |
| status = readw_(cntlr.status); |
| if (wait_til_set ^ ((status & bitmask) == 0)) { |
| if (wait_til_set) |
| writew_((status & bitmask), cntlr.status); |
| return status; |
| } |
| udelay(10); |
| } |
| |
| printk(BIOS_DEBUG, "ICH SPI: SCIP timeout, read %x, bitmask %x\n", |
| status, bitmask); |
| return -1; |
| } |
| |
| static int spi_is_multichip (void) |
| { |
| if (!(cntlr.hsfs & HSFS_FDV)) |
| return 0; |
| return !!((cntlr.flmap0 >> 8) & 3); |
| } |
| |
| static int spi_ctrlr_xfer(const struct spi_slave *slave, const void *dout, |
| size_t bytesout, void *din, size_t bytesin) |
| { |
| uint16_t control; |
| int16_t opcode_index; |
| int with_address; |
| int status; |
| |
| spi_transaction trans = { |
| dout, bytesout, |
| din, bytesin, |
| 0xff, 0xff, 0 |
| }; |
| |
| /* There has to always at least be an opcode. */ |
| if (!bytesout || !dout) { |
| printk(BIOS_DEBUG, "ICH SPI: No opcode for transfer\n"); |
| return -1; |
| } |
| /* Make sure if we read something we have a place to put it. */ |
| if (bytesin != 0 && !din) { |
| printk(BIOS_DEBUG, "ICH SPI: Read but no target buffer\n"); |
| return -1; |
| } |
| |
| if (ich_status_poll(SPIS_SCIP, 0) == -1) |
| return -1; |
| |
| writew_(SPIS_CDS | SPIS_FCERR, cntlr.status); |
| |
| spi_setup_type(&trans); |
| if ((opcode_index = spi_setup_opcode(&trans)) < 0) |
| return -1; |
| if ((with_address = spi_setup_offset(&trans)) < 0) |
| return -1; |
| |
| if (trans.opcode == SPI_OPCODE_WREN) { |
| /* |
| * Treat Write Enable as Atomic Pre-Op if possible |
| * in order to prevent the Management Engine from |
| * issuing a transaction between WREN and DATA. |
| */ |
| if (!ichspi_lock) |
| writew_(trans.opcode, cntlr.preop); |
| return 0; |
| } |
| |
| /* Preset control fields */ |
| control = SPIC_SCGO | ((opcode_index & 0x07) << 4); |
| |
| /* Issue atomic preop cycle if needed */ |
| if (readw_(cntlr.preop)) |
| control |= SPIC_ACS; |
| |
| if (!trans.bytesout && !trans.bytesin) { |
| /* SPI addresses are 24 bit only */ |
| if (with_address) |
| writel_(trans.offset & 0x00FFFFFF, cntlr.addr); |
| |
| /* |
| * This is a 'no data' command (like Write Enable), its |
| * bitesout size was 1, decremented to zero while executing |
| * spi_setup_opcode() above. Tell the chip to send the |
| * command. |
| */ |
| writew_(control, cntlr.control); |
| |
| /* wait for the result */ |
| status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); |
| if (status == -1) |
| return -1; |
| |
| if (status & SPIS_FCERR) { |
| printk(BIOS_DEBUG, "ICH SPI: Command transaction error\n"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* |
| * Check if this is a write command attempting to transfer more bytes |
| * than the controller can handle. Iterations for writes are not |
| * supported here because each SPI write command needs to be preceded |
| * and followed by other SPI commands, and this sequence is controlled |
| * by the SPI chip driver. |
| */ |
| if (trans.bytesout > cntlr.databytes) { |
| printk(BIOS_DEBUG, "ICH SPI: Too much to write. Does your SPI chip driver use" |
| " spi_crop_chunk()?\n"); |
| return -1; |
| } |
| |
| /* |
| * Read or write up to databytes bytes at a time until everything has |
| * been sent. |
| */ |
| while (trans.bytesout || trans.bytesin) { |
| uint32_t data_length; |
| |
| /* SPI addresses are 24 bit only */ |
| writel_(trans.offset & 0x00FFFFFF, cntlr.addr); |
| |
| if (trans.bytesout) |
| data_length = min(trans.bytesout, cntlr.databytes); |
| else |
| data_length = min(trans.bytesin, cntlr.databytes); |
| |
| /* Program data into FDATA0 to N */ |
| if (trans.bytesout) { |
| write_reg(trans.out, cntlr.data, data_length); |
| spi_use_out(&trans, data_length); |
| if (with_address) |
| trans.offset += data_length; |
| } |
| |
| /* Add proper control fields' values */ |
| control &= ~((cntlr.databytes - 1) << 8); |
| control |= SPIC_DS; |
| control |= (data_length - 1) << 8; |
| |
| /* write it */ |
| writew_(control, cntlr.control); |
| |
| /* Wait for Cycle Done Status or Flash Cycle Error. */ |
| status = ich_status_poll(SPIS_CDS | SPIS_FCERR, 1); |
| if (status == -1) |
| return -1; |
| |
| if (status & SPIS_FCERR) { |
| printk(BIOS_DEBUG, "ICH SPI: Data transaction error\n"); |
| return -1; |
| } |
| |
| if (trans.bytesin) { |
| read_reg(cntlr.data, trans.in, data_length); |
| spi_use_in(&trans, data_length); |
| if (with_address) |
| trans.offset += data_length; |
| } |
| } |
| |
| /* Clear atomic preop now that xfer is done */ |
| writew_(0, cntlr.preop); |
| |
| return 0; |
| } |
| |
| /* Sets FLA in FADDR to (addr & 0x01FFFFFF) without touching other bits. */ |
| static void ich_hwseq_set_addr(uint32_t addr) |
| { |
| uint32_t addr_old = readl_(&cntlr.ich9_spi->faddr) & ~0x01FFFFFF; |
| writel_((addr & 0x01FFFFFF) | addr_old, &cntlr.ich9_spi->faddr); |
| } |
| |
| /* Polls for Cycle Done Status, Flash Cycle Error or timeout in 8 us intervals. |
| Resets all error flags in HSFS. |
| Returns 0 if the cycle completes successfully without errors within |
| timeout us, 1 on errors. */ |
| static int ich_hwseq_wait_for_cycle_complete(unsigned int timeout, |
| unsigned int len) |
| { |
| uint16_t hsfs; |
| uint32_t addr; |
| |
| timeout /= 8; /* scale timeout duration to counter */ |
| while ((((hsfs = readw_(&cntlr.ich9_spi->hsfs)) & |
| (HSFS_FDONE | HSFS_FCERR)) == 0) && |
| --timeout) { |
| udelay(8); |
| } |
| writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); |
| |
| if (!timeout) { |
| uint16_t hsfc; |
| addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF; |
| hsfc = readw_(&cntlr.ich9_spi->hsfc); |
| printk(BIOS_ERR, "Transaction timeout between offset 0x%08x and " |
| "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n", |
| addr, addr + len - 1, addr, len - 1, |
| hsfc, hsfs); |
| return 1; |
| } |
| |
| if (hsfs & HSFS_FCERR) { |
| uint16_t hsfc; |
| addr = readl_(&cntlr.ich9_spi->faddr) & 0x01FFFFFF; |
| hsfc = readw_(&cntlr.ich9_spi->hsfc); |
| printk(BIOS_ERR, "Transaction error between offset 0x%08x and " |
| "0x%08x (= 0x%08x + %d) HSFC=%x HSFS=%x!\n", |
| addr, addr + len - 1, addr, len - 1, |
| hsfc, hsfs); |
| return 1; |
| } |
| return 0; |
| } |
| |
| |
| static int ich_hwseq_erase(const struct spi_flash *flash, u32 offset, |
| size_t len) |
| { |
| u32 start, end, erase_size; |
| int ret; |
| uint16_t hsfc; |
| uint16_t timeout = 1000 * 60; |
| |
| erase_size = flash->sector_size; |
| if (offset % erase_size || len % erase_size) { |
| printk(BIOS_ERR, "SF: Erase offset/length not multiple of erase size\n"); |
| return -1; |
| } |
| |
| ret = spi_claim_bus(&flash->spi); |
| if (ret) { |
| printk(BIOS_ERR, "SF: Unable to claim SPI bus\n"); |
| return ret; |
| } |
| |
| start = offset; |
| end = start + len; |
| |
| while (offset < end) { |
| /* make sure FDONE, FCERR, AEL are cleared by writing 1 to them */ |
| writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); |
| |
| ich_hwseq_set_addr(offset); |
| |
| offset += erase_size; |
| |
| hsfc = readw_(&cntlr.ich9_spi->hsfc); |
| hsfc &= ~HSFC_FCYCLE; /* clear operation */ |
| hsfc |= (0x3 << HSFC_FCYCLE_OFF); /* set erase operation */ |
| hsfc |= HSFC_FGO; /* start */ |
| writew_(hsfc, &cntlr.ich9_spi->hsfc); |
| if (ich_hwseq_wait_for_cycle_complete(timeout, len)) |
| { |
| printk(BIOS_ERR, "SF: Erase failed at %x\n", offset - erase_size); |
| ret = -1; |
| goto out; |
| } |
| } |
| |
| printk(BIOS_DEBUG, "SF: Successfully erased %zu bytes @ %#x\n", len, start); |
| |
| out: |
| spi_release_bus(&flash->spi); |
| return ret; |
| } |
| |
| static void ich_read_data(uint8_t *data, int len) |
| { |
| int i; |
| uint32_t temp32 = 0; |
| |
| for (i = 0; i < len; i++) { |
| if ((i % 4) == 0) |
| temp32 = readl_(cntlr.data + i); |
| |
| data[i] = (temp32 >> ((i % 4) * 8)) & 0xff; |
| } |
| } |
| |
| static int ich_hwseq_read(const struct spi_flash *flash, u32 addr, size_t len, |
| void *buf) |
| { |
| uint16_t hsfc; |
| uint16_t timeout = 100 * 60; |
| uint8_t block_len; |
| |
| if (addr + len > flash->size) { |
| printk (BIOS_ERR, |
| "Attempt to read %x-%x which is out of chip\n", |
| (unsigned) addr, |
| (unsigned) addr+(unsigned) len); |
| return -1; |
| } |
| |
| /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ |
| writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); |
| |
| while (len > 0) { |
| block_len = min(len, cntlr.databytes); |
| if (block_len > (~addr & 0xff)) |
| block_len = (~addr & 0xff) + 1; |
| ich_hwseq_set_addr(addr); |
| hsfc = readw_(&cntlr.ich9_spi->hsfc); |
| hsfc &= ~HSFC_FCYCLE; /* set read operation */ |
| hsfc &= ~HSFC_FDBC; /* clear byte count */ |
| /* set byte count */ |
| hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC); |
| hsfc |= HSFC_FGO; /* start */ |
| writew_(hsfc, &cntlr.ich9_spi->hsfc); |
| |
| if (ich_hwseq_wait_for_cycle_complete(timeout, block_len)) |
| return 1; |
| ich_read_data(buf, block_len); |
| addr += block_len; |
| buf += block_len; |
| len -= block_len; |
| } |
| return 0; |
| } |
| |
| /* Fill len bytes from the data array into the fdata/spid registers. |
| * |
| * Note that using len > flash->pgm->spi.max_data_write will trash the registers |
| * following the data registers. |
| */ |
| static void ich_fill_data(const uint8_t *data, int len) |
| { |
| uint32_t temp32 = 0; |
| int i; |
| |
| if (len <= 0) |
| return; |
| |
| for (i = 0; i < len; i++) { |
| if ((i % 4) == 0) |
| temp32 = 0; |
| |
| temp32 |= ((uint32_t) data[i]) << ((i % 4) * 8); |
| |
| if ((i % 4) == 3) /* 32 bits are full, write them to regs. */ |
| writel_(temp32, cntlr.data + (i - (i % 4))); |
| } |
| i--; |
| if ((i % 4) != 3) /* Write remaining data to regs. */ |
| writel_(temp32, cntlr.data + (i - (i % 4))); |
| } |
| |
| static int ich_hwseq_write(const struct spi_flash *flash, u32 addr, size_t len, |
| const void *buf) |
| { |
| uint16_t hsfc; |
| uint16_t timeout = 100 * 60; |
| uint8_t block_len; |
| uint32_t start = addr; |
| |
| if (addr + len > flash->size) { |
| printk (BIOS_ERR, |
| "Attempt to write 0x%x-0x%x which is out of chip\n", |
| (unsigned)addr, (unsigned) (addr+len)); |
| return -1; |
| } |
| |
| /* clear FDONE, FCERR, AEL by writing 1 to them (if they are set) */ |
| writew_(readw_(&cntlr.ich9_spi->hsfs), &cntlr.ich9_spi->hsfs); |
| |
| while (len > 0) { |
| block_len = min(len, cntlr.databytes); |
| if (block_len > (~addr & 0xff)) |
| block_len = (~addr & 0xff) + 1; |
| |
| ich_hwseq_set_addr(addr); |
| |
| ich_fill_data(buf, block_len); |
| hsfc = readw_(&cntlr.ich9_spi->hsfc); |
| hsfc &= ~HSFC_FCYCLE; /* clear operation */ |
| hsfc |= (0x2 << HSFC_FCYCLE_OFF); /* set write operation */ |
| hsfc &= ~HSFC_FDBC; /* clear byte count */ |
| /* set byte count */ |
| hsfc |= (((block_len - 1) << HSFC_FDBC_OFF) & HSFC_FDBC); |
| hsfc |= HSFC_FGO; /* start */ |
| writew_(hsfc, &cntlr.ich9_spi->hsfc); |
| |
| if (ich_hwseq_wait_for_cycle_complete(timeout, block_len)) |
| { |
| printk (BIOS_ERR, "SF: write failure at %x\n", |
| addr); |
| return -1; |
| } |
| addr += block_len; |
| buf += block_len; |
| len -= block_len; |
| } |
| printk(BIOS_DEBUG, "SF: Successfully written %u bytes @ %#x\n", |
| (unsigned) (addr - start), start); |
| return 0; |
| } |
| |
| static const struct spi_flash_ops spi_flash_ops = { |
| .read = ich_hwseq_read, |
| .write = ich_hwseq_write, |
| .erase = ich_hwseq_erase, |
| }; |
| |
| static int spi_flash_programmer_probe(const struct spi_slave *spi, |
| struct spi_flash *flash) |
| { |
| uint32_t flcomp; |
| |
| if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX)) |
| return spi_flash_generic_probe(spi, flash); |
| |
| /* Try generic probing first if spi_is_multichip returns 0. */ |
| if (!spi_is_multichip() && !spi_flash_generic_probe(spi, flash)) |
| return 0; |
| |
| memcpy(&flash->spi, spi, sizeof(*spi)); |
| flash->name = "Opaque HW-sequencing"; |
| |
| ich_hwseq_set_addr (0); |
| switch ((cntlr.hsfs >> 3) & 3) |
| { |
| case 0: |
| flash->sector_size = 256; |
| break; |
| case 1: |
| flash->sector_size = 4096; |
| break; |
| case 2: |
| flash->sector_size = 8192; |
| break; |
| case 3: |
| flash->sector_size = 65536; |
| break; |
| } |
| |
| writel_ (0x1000, &cntlr.ich9_spi->fdoc); |
| flcomp = readl_(&cntlr.ich9_spi->fdod); |
| |
| flash->size = 1 << (19 + (flcomp & 7)); |
| |
| flash->ops = &spi_flash_ops; |
| |
| if ((cntlr.hsfs & HSFS_FDV) && ((cntlr.flmap0 >> 8) & 3)) |
| flash->size += 1 << (19 + ((flcomp >> 3) & 7)); |
| printk (BIOS_DEBUG, "flash size 0x%x bytes\n", flash->size); |
| |
| return 0; |
| } |
| |
| static int xfer_vectors(const struct spi_slave *slave, |
| struct spi_op vectors[], size_t count) |
| { |
| return spi_flash_vector_helper(slave, vectors, count, spi_ctrlr_xfer); |
| } |
| |
| #define SPI_FPR_SHIFT 12 |
| #define ICH7_SPI_FPR_MASK 0xfff |
| #define ICH9_SPI_FPR_MASK 0x1fff |
| #define SPI_FPR_BASE_SHIFT 0 |
| #define ICH7_SPI_FPR_LIMIT_SHIFT 12 |
| #define ICH9_SPI_FPR_LIMIT_SHIFT 16 |
| #define ICH9_SPI_FPR_RPE (1 << 15) /* Read Protect */ |
| #define SPI_FPR_WPE (1 << 31) /* Write Protect */ |
| |
| static u32 spi_fpr(u32 base, u32 limit) |
| { |
| u32 ret; |
| u32 mask, limit_shift; |
| if (IS_ENABLED(CONFIG_SOUTHBRIDGE_INTEL_I82801GX)) { |
| mask = ICH7_SPI_FPR_MASK; |
| limit_shift = ICH7_SPI_FPR_LIMIT_SHIFT; |
| } else { |
| mask = ICH9_SPI_FPR_MASK; |
| limit_shift = ICH9_SPI_FPR_LIMIT_SHIFT; |
| } |
| ret = ((limit >> SPI_FPR_SHIFT) & mask) << limit_shift; |
| ret |= ((base >> SPI_FPR_SHIFT) & mask) << SPI_FPR_BASE_SHIFT; |
| return ret; |
| } |
| |
| /* |
| * Protect range of SPI flash defined by [start, start+size-1] using Flash |
| * Protected Range (FPR) register if available. |
| * Returns 0 on success, -1 on failure of programming fpr registers. |
| */ |
| static int spi_flash_protect(const struct spi_flash *flash, |
| const struct region *region) |
| { |
| u32 start = region_offset(region); |
| u32 end = start + region_sz(region) - 1; |
| u32 reg; |
| int fpr; |
| uint32_t *fpr_base; |
| |
| fpr_base = cntlr.fpr; |
| |
| /* Find first empty FPR */ |
| for (fpr = 0; fpr < cntlr.fpr_max; fpr++) { |
| reg = read32(&fpr_base[fpr]); |
| if (reg == 0) |
| break; |
| } |
| |
| if (fpr == cntlr.fpr_max) { |
| printk(BIOS_ERR, "ERROR: No SPI FPR free!\n"); |
| return -1; |
| } |
| |
| /* Set protected range base and limit */ |
| reg = spi_fpr(start, end) | SPI_FPR_WPE; |
| |
| /* Set the FPR register and verify it is protected */ |
| write32(&fpr_base[fpr], reg); |
| reg = read32(&fpr_base[fpr]); |
| if (!(reg & SPI_FPR_WPE)) { |
| printk(BIOS_ERR, "ERROR: Unable to set SPI FPR %d\n", fpr); |
| return -1; |
| } |
| |
| printk(BIOS_INFO, "%s: FPR %d is enabled for range 0x%08x-0x%08x\n", |
| __func__, fpr, start, end); |
| return 0; |
| } |
| |
| static const struct spi_ctrlr spi_ctrlr = { |
| .xfer_vector = xfer_vectors, |
| .max_xfer_size = member_size(ich9_spi_regs, fdata), |
| .flash_probe = spi_flash_programmer_probe, |
| .flash_protect = spi_flash_protect, |
| }; |
| |
| const struct spi_ctrlr_buses spi_ctrlr_bus_map[] = { |
| { |
| .ctrlr = &spi_ctrlr, |
| .bus_start = 0, |
| .bus_end = 0, |
| }, |
| }; |
| |
| const size_t spi_ctrlr_bus_map_count = ARRAY_SIZE(spi_ctrlr_bus_map); |