blob: efb1f0f2574ddc06a6ef16f5cbdd71316918bda0 [file] [log] [blame]
/*
* This file is part of the LinuxBIOS project.
*
* Copyright (C) 2003-2004 Linux Networx
* (Written by Eric Biederman <ebiederman@lnxi.com> for Linux Networx)
* Copyright (C) 2003 Greg Watson <jarrah@users.sourceforge.net>
* Copyright (C) 2004 Li-Ta Lo <ollie@lanl.gov>
* Copyright (C) 2005-2006 Tyan
* (Written by Yinghai Lu <yhlu@tyan.com> for Tyan)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <console/console.h>
#include <device/device.h>
#include <device/path.h>
#include <device/pci.h>
#include <device/resource.h>
#include <string.h>
/**
* @brief See if a device structure exists for path
*
* @param bus The bus to find the device on
* @param path The relative path from the bus to the appropriate device
* @return pointer to a device structure for the device on bus at path
* or 0/NULL if no device is found
*/
device_t find_dev_path(struct bus *parent, struct device_path *path)
{
device_t child;
for(child = parent->children; child; child = child->sibling) {
if (path_eq(path, &child->path)) {
break;
}
}
return child;
}
/**
* @brief See if a device structure already exists and if not allocate it
*
* @param bus The bus to find the device on
* @param path The relative path from the bus to the appropriate device
* @return pointer to a device structure for the device on bus at path
*/
device_t alloc_find_dev(struct bus *parent, struct device_path *path)
{
device_t child;
child = find_dev_path(parent, path);
if (!child) {
child = alloc_dev(parent, path);
}
return child;
}
/**
* @brief Given a PCI bus and a devfn number, find the device structure
*
* @param bus The bus number
* @param devfn a device/function number
* @return pointer to the device structure
*/
struct device *dev_find_slot(unsigned int bus, unsigned int devfn)
{
struct device *dev, *result;
result = 0;
for (dev = all_devices; dev; dev = dev->next) {
if ((dev->path.type == DEVICE_PATH_PCI) &&
(dev->bus->secondary == bus) &&
(dev->path.u.pci.devfn == devfn)) {
result = dev;
break;
}
}
return result;
}
/**
* @brief Given a smbus bus and a device number, find the device structure
*
* @param bus The bus number
* @param addr a device number
* @return pointer to the device structure
*/
struct device *dev_find_slot_on_smbus(unsigned int bus, unsigned int addr)
{
struct device *dev, *result;
result = 0;
for (dev = all_devices; dev; dev = dev->next) {
if ((dev->path.type == DEVICE_PATH_I2C) &&
(dev->bus->secondary == bus) &&
(dev->path.u.i2c.device == addr)) {
result = dev;
break;
}
}
return result;
}
/** Find a device of a given vendor and type
* @param vendor Vendor ID (e.g. 0x8086 for Intel)
* @param device Device ID
* @param from Pointer to the device structure, used as a starting point
* in the linked list of all_devices, which can be 0 to start at the
* head of the list (i.e. all_devices)
* @return Pointer to the device struct
*/
struct device *dev_find_device(unsigned int vendor, unsigned int device, struct device *from)
{
if (!from)
from = all_devices;
else
from = from->next;
while (from && (from->vendor != vendor || from->device != device)) {
from = from->next;
}
return from;
}
/** Find a device of a given class
* @param class Class of the device
* @param from Pointer to the device structure, used as a starting point
* in the linked list of all_devices, which can be 0 to start at the
* head of the list (i.e. all_devices)
* @return Pointer to the device struct
*/
struct device *dev_find_class(unsigned int class, struct device *from)
{
if (!from)
from = all_devices;
else
from = from->next;
while (from && (from->class & 0xffffff00) != class)
from = from->next;
return from;
}
const char *dev_path(device_t dev)
{
static char buffer[DEVICE_PATH_MAX];
buffer[0] = '\0';
if (!dev) {
memcpy(buffer, "<null>", 7);
}
else {
switch(dev->path.type) {
case DEVICE_PATH_ROOT:
memcpy(buffer, "Root Device", 12);
break;
case DEVICE_PATH_PCI:
#if PCI_BUS_SEGN_BITS
sprintf(buffer, "PCI: %04x:%02x:%02x.%01x",
dev->bus->secondary>>8, dev->bus->secondary & 0xff,
PCI_SLOT(dev->path.u.pci.devfn), PCI_FUNC(dev->path.u.pci.devfn));
#else
sprintf(buffer, "PCI: %02x:%02x.%01x",
dev->bus->secondary,
PCI_SLOT(dev->path.u.pci.devfn), PCI_FUNC(dev->path.u.pci.devfn));
#endif
break;
case DEVICE_PATH_PNP:
sprintf(buffer, "PNP: %04x.%01x",
dev->path.u.pnp.port, dev->path.u.pnp.device);
break;
case DEVICE_PATH_I2C:
sprintf(buffer, "I2C: %02x:%02x",
dev->bus->secondary,
dev->path.u.i2c.device);
break;
case DEVICE_PATH_APIC:
sprintf(buffer, "APIC: %02x",
dev->path.u.apic.apic_id);
break;
case DEVICE_PATH_PCI_DOMAIN:
sprintf(buffer, "PCI_DOMAIN: %04x",
dev->path.u.pci_domain.domain);
break;
case DEVICE_PATH_APIC_CLUSTER:
sprintf(buffer, "APIC_CLUSTER: %01x",
dev->path.u.apic_cluster.cluster);
break;
case DEVICE_PATH_CPU:
sprintf(buffer, "CPU: %02x", dev->path.u.cpu.id);
break;
case DEVICE_PATH_CPU_BUS:
sprintf(buffer, "CPU_BUS: %02x", dev->path.u.cpu_bus.id);
break;
default:
printk_err("Unknown device path type: %d\n", dev->path.type);
break;
}
}
return buffer;
}
const char *bus_path(struct bus *bus)
{
static char buffer[BUS_PATH_MAX];
sprintf(buffer, "%s,%d",
dev_path(bus->dev), bus->link);
return buffer;
}
int path_eq(struct device_path *path1, struct device_path *path2)
{
int equal = 0;
if (path1->type == path2->type) {
switch(path1->type) {
case DEVICE_PATH_NONE:
break;
case DEVICE_PATH_ROOT:
equal = 1;
break;
case DEVICE_PATH_PCI:
equal = (path1->u.pci.devfn == path2->u.pci.devfn);
break;
case DEVICE_PATH_PNP:
equal = (path1->u.pnp.port == path2->u.pnp.port) &&
(path1->u.pnp.device == path2->u.pnp.device);
break;
case DEVICE_PATH_I2C:
equal = (path1->u.i2c.device == path2->u.i2c.device);
break;
case DEVICE_PATH_APIC:
equal = (path1->u.apic.apic_id == path2->u.apic.apic_id);
break;
case DEVICE_PATH_PCI_DOMAIN:
equal = (path1->u.pci_domain.domain == path2->u.pci_domain.domain);
break;
case DEVICE_PATH_APIC_CLUSTER:
equal = (path1->u.apic_cluster.cluster == path2->u.apic_cluster.cluster);
break;
case DEVICE_PATH_CPU:
equal = (path1->u.cpu.id == path2->u.cpu.id);
break;
case DEVICE_PATH_CPU_BUS:
equal = (path1->u.cpu_bus.id == path2->u.cpu_bus.id);
break;
default:
printk_err("Uknown device type: %d\n", path1->type);
break;
}
}
return equal;
}
/**
* See if we have unused but allocated resource structures.
* If so remove the allocation.
* @param dev The device to find the resource on
*/
void compact_resources(device_t dev)
{
struct resource *resource;
int i;
/* Move all of the free resources to the end */
for(i = 0; i < dev->resources;) {
resource = &dev->resource[i];
if (!resource->flags) {
memmove(resource, resource + 1, dev->resources - i);
dev->resources -= 1;
memset(&dev->resource[dev->resources], 0, sizeof(*resource));
} else {
i++;
}
}
}
/**
* See if a resource structure already exists for a given index
* @param dev The device to find the resource on
* @param index The index of the resource on the device.
* @return the resource if it already exists
*/
struct resource *probe_resource(device_t dev, unsigned index)
{
struct resource *resource;
int i;
/* See if there is a resource with the appropriate index */
resource = 0;
for(i = 0; i < dev->resources; i++) {
if (dev->resource[i].index == index) {
resource = &dev->resource[i];
break;
}
}
return resource;
}
/**
* See if a resource structure already exists for a given index and if
* not allocate one. Then initialize the initialize the resource
* to default values.
* @param dev The device to find the resource on
* @param index The index of the resource on the device.
*/
struct resource *new_resource(device_t dev, unsigned index)
{
struct resource *resource;
/* First move all of the free resources to the end */
compact_resources(dev);
/* See if there is a resource with the appropriate index */
resource = probe_resource(dev, index);
if (!resource) {
if (dev->resources == MAX_RESOURCES) {
die("MAX_RESOURCES exceeded.");
}
resource = &dev->resource[dev->resources];
memset(resource, 0, sizeof(*resource));
dev->resources++;
}
/* Initialize the resource values */
if (!(resource->flags & IORESOURCE_FIXED)) {
resource->flags = 0;
resource->base = 0;
}
resource->size = 0;
resource->limit = 0;
resource->index = index;
resource->align = 0;
resource->gran = 0;
return resource;
}
/**
* Return an existing resource structure for a given index.
* @param dev The device to find the resource on
* @param index The index of the resource on the device.
*/
struct resource *find_resource(device_t dev, unsigned index)
{
struct resource *resource;
/* See if there is a resource with the appropriate index */
resource = probe_resource(dev, index);
if (!resource) {
printk_emerg("%s missing resource: %02x\n",
dev_path(dev), index);
die("");
}
return resource;
}
/**
* @brief round a number up to the next multiple of gran
* @param val the starting value
* @param gran granularity we are aligning the number to.
* @returns aligned value
*/
static resource_t align_up(resource_t val, unsigned long gran)
{
resource_t mask;
mask = (1ULL << gran) - 1ULL;
val += mask;
val &= ~mask;
return val;
}
/**
* @brief round a number up to the previous multiple of gran
* @param val the starting value
* @param gran granularity we are aligning the number to.
* @returns aligned value
*/
static resource_t align_down(resource_t val, unsigned long gran)
{
resource_t mask;
mask = (1ULL << gran) - 1ULL;
val &= ~mask;
return val;
}
/**
* @brief Compute the maximum address that is part of a resource
* @param resource the resource whose limit is desired
* @returns the end
*/
resource_t resource_end(struct resource *resource)
{
resource_t base, end;
/* get the base address */
base = resource->base;
/* For a non bridge resource granularity and alignment are the same.
* For a bridge resource align is the largest needed alignment below
* the bridge. While the granularity is simply how many low bits of the
* address cannot be set.
*/
/* Get the end (rounded up) */
end = base + align_up(resource->size, resource->gran) - 1;
return end;
}
/**
* @brief Compute the maximum legal value for resource->base
* @param resource the resource whose maximum is desired
* @returns the maximum
*/
resource_t resource_max(struct resource *resource)
{
resource_t max;
max = align_down(resource->limit - resource->size + 1, resource->align);
return max;
}
/**
* @brief return the resource type of a resource
* @param resource the resource type to decode.
*/
const char *resource_type(struct resource *resource)
{
static char buffer[RESOURCE_TYPE_MAX];
sprintf(buffer, "%s%s%s%s",
((resource->flags & IORESOURCE_READONLY)? "ro": ""),
((resource->flags & IORESOURCE_PREFETCH)? "pref":""),
((resource->flags == 0)? "unused":
(resource->flags & IORESOURCE_IO)? "io":
(resource->flags & IORESOURCE_DRQ)? "drq":
(resource->flags & IORESOURCE_IRQ)? "irq":
(resource->flags & IORESOURCE_MEM)? "mem":"??????"),
((resource->flags & IORESOURCE_PCI64)?"64":""));
return buffer;
}
/**
* @brief print the resource that was just stored.
* @param dev the device the stored resorce lives on
* @param resource the resource that was just stored.
*/
void report_resource_stored(device_t dev, struct resource *resource, const char *comment)
{
if (resource->flags & IORESOURCE_STORED) {
unsigned char buf[10];
unsigned long long base, end;
base = resource->base;
end = resource_end(resource);
buf[0] = '\0';
if (resource->flags & IORESOURCE_PCI_BRIDGE) {
#if PCI_BUS_SEGN_BITS
sprintf(buf, "bus %04x:%02x ", dev->bus->secondary>>8, dev->link[0].secondary & 0xff);
#else
sprintf(buf, "bus %02x ", dev->link[0].secondary);
#endif
}
printk_debug(
"%s %02x <- [0x%010Lx - 0x%010Lx] size 0x%08Lx gran 0x%02x %s%s%s\n",
dev_path(dev),
resource->index,
base, end,
resource->size, resource->gran,
buf,
resource_type(resource),
comment);
}
}
void search_bus_resources(struct bus *bus,
unsigned long type_mask, unsigned long type,
resource_search_t search, void *gp)
{
struct device *curdev;
for(curdev = bus->children; curdev; curdev = curdev->sibling) {
int i;
/* Ignore disabled devices */
if (!curdev->have_resources) continue;
for(i = 0; i < curdev->resources; i++) {
struct resource *resource = &curdev->resource[i];
/* If it isn't the right kind of resource ignore it */
if ((resource->flags & type_mask) != type) {
continue;
}
/* If it is a subtractive resource recurse */
if (resource->flags & IORESOURCE_SUBTRACTIVE) {
struct bus * subbus;
subbus = &curdev->link[IOINDEX_SUBTRACTIVE_LINK(resource->index)];
search_bus_resources(subbus, type_mask, type, search, gp);
continue;
}
search(gp, curdev, resource);
}
}
}
void search_global_resources(
unsigned long type_mask, unsigned long type,
resource_search_t search, void *gp)
{
struct device *curdev;
for(curdev = all_devices; curdev; curdev = curdev->next) {
int i;
/* Ignore disabled devices */
if (!curdev->have_resources) continue;
for(i = 0; i < curdev->resources; i++) {
struct resource *resource = &curdev->resource[i];
/* If it isn't the right kind of resource ignore it */
if ((resource->flags & type_mask) != type) {
continue;
}
/* If it is a subtractive resource ignore it */
if (resource->flags & IORESOURCE_SUBTRACTIVE) {
continue;
}
search(gp, curdev, resource);
}
}
}
void dev_set_enabled(device_t dev, int enable)
{
if (dev->enabled == enable) {
return;
}
dev->enabled = enable;
if (dev->ops && dev->ops->enable) {
dev->ops->enable(dev);
}
else if (dev->chip_ops && dev->chip_ops->enable_dev) {
dev->chip_ops->enable_dev(dev);
}
}
void disable_children(struct bus *bus)
{
device_t child;
for(child = bus->children; child; child = child->sibling) {
int link;
for(link = 0; link < child->links; link++) {
disable_children(&child->link[link]);
}
dev_set_enabled(child, 0);
}
}