blob: bee6135915105dcff0c94ab594ab0d9c292bb8aa [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* Copyright (C) 2003 Eric W. Biederman <ebiederm@xmission.com>
* Copyright (C) 2009 Ron Minnich <rminnich@gmail.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA, 02110-1301 USA
*/
#include <console/console.h>
#include <part/fallback_boot.h>
#include <boot/elf.h>
#include <boot/elf_boot.h>
#include <boot/coreboot_tables.h>
#include <ip_checksum.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <cbfs.h>
#include <lib.h>
#ifndef CONFIG_BIG_ENDIAN
#define ntohl(x) ( ((x&0xff)<<24) | ((x&0xff00)<<8) | \
((x&0xff0000) >> 8) | ((x&0xff000000) >> 24) )
#else
#define ntohl(x) (x)
#endif
/* Maximum physical address we can use for the coreboot bounce buffer.
*/
#ifndef MAX_ADDR
#define MAX_ADDR -1UL
#endif
extern unsigned char _ram_seg;
extern unsigned char _eram_seg;
struct segment {
struct segment *next;
struct segment *prev;
struct segment *phdr_next;
struct segment *phdr_prev;
unsigned long s_dstaddr;
unsigned long s_srcaddr;
unsigned long s_memsz;
unsigned long s_filesz;
int compression;
};
struct verify_callback {
struct verify_callback *next;
int (*callback)(struct verify_callback *vcb,
Elf_ehdr *ehdr, Elf_phdr *phdr, struct segment *head);
unsigned long desc_offset;
unsigned long desc_addr;
};
struct ip_checksum_vcb {
struct verify_callback data;
unsigned short ip_checksum;
};
static int selfboot(struct lb_memory *mem, struct cbfs_payload *payload);
void * cbfs_load_payload(struct lb_memory *lb_mem, const char *name)
{
struct cbfs_payload *payload;
payload = (struct cbfs_payload *)cbfs_find_file(name, CBFS_TYPE_PAYLOAD);
if (payload == NULL)
return (void *) -1;
printk_debug("Got a payload\n");
selfboot(lb_mem, payload);
printk_emerg("SELFBOOT RETURNED!\n");
return (void *) -1;
}
/* The problem:
* Static executables all want to share the same addresses
* in memory because only a few addresses are reliably present on
* a machine, and implementing general relocation is hard.
*
* The solution:
* - Allocate a buffer the size of the coreboot image plus additional
* required space.
* - Anything that would overwrite coreboot copy into the lower part of
* the buffer.
* - After loading an ELF image copy coreboot to the top of the buffer.
* - Then jump to the loaded image.
*
* Benefits:
* - Nearly arbitrary standalone executables can be loaded.
* - Coreboot is preserved, so it can be returned to.
* - The implementation is still relatively simple,
* and much simpler then the general case implemented in kexec.
*
*/
static unsigned long bounce_size, bounce_buffer;
static void get_bounce_buffer(struct lb_memory *mem, unsigned long req_size)
{
unsigned long lb_size;
unsigned long mem_entries;
unsigned long buffer;
int i;
lb_size = (unsigned long)(&_eram_seg - &_ram_seg);
/* Double coreboot size so I have somewhere to place a copy to return to */
lb_size = req_size + lb_size;
mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
buffer = 0;
for(i = 0; i < mem_entries; i++) {
unsigned long mstart, mend;
unsigned long msize;
unsigned long tbuffer;
if (mem->map[i].type != LB_MEM_RAM)
continue;
if (unpack_lb64(mem->map[i].start) > MAX_ADDR)
continue;
if (unpack_lb64(mem->map[i].size) < lb_size)
continue;
mstart = unpack_lb64(mem->map[i].start);
msize = MAX_ADDR - mstart +1;
if (msize > unpack_lb64(mem->map[i].size))
msize = unpack_lb64(mem->map[i].size);
mend = mstart + msize;
tbuffer = mend - lb_size;
if (tbuffer < buffer)
continue;
buffer = tbuffer;
}
bounce_buffer = buffer;
bounce_size = req_size;
}
static int valid_area(struct lb_memory *mem, unsigned long buffer,
unsigned long start, unsigned long len)
{
/* Check through all of the memory segments and ensure
* the segment that was passed in is completely contained
* in RAM.
*/
int i;
unsigned long end = start + len;
unsigned long mem_entries = (mem->size - sizeof(*mem))/sizeof(mem->map[0]);
/* See if I conflict with the bounce buffer */
if (end >= buffer) {
return 0;
}
/* Walk through the table of valid memory ranges and see if I
* have a match.
*/
for(i = 0; i < mem_entries; i++) {
uint64_t mstart, mend;
uint32_t mtype;
mtype = mem->map[i].type;
mstart = unpack_lb64(mem->map[i].start);
mend = mstart + unpack_lb64(mem->map[i].size);
if ((mtype == LB_MEM_RAM) && (start < mend) && (end > mstart)) {
break;
}
if ((mtype == LB_MEM_TABLE) && (start < mend) && (end > mstart)) {
printk_err("Payload is overwriting Coreboot tables.\n");
break;
}
}
if (i == mem_entries) {
printk_err("No matching ram area found for range:\n");
printk_err(" [0x%016lx, 0x%016lx)\n", start, end);
printk_err("Ram areas\n");
for(i = 0; i < mem_entries; i++) {
uint64_t mstart, mend;
uint32_t mtype;
mtype = mem->map[i].type;
mstart = unpack_lb64(mem->map[i].start);
mend = mstart + unpack_lb64(mem->map[i].size);
printk_err(" [0x%016lx, 0x%016lx) %s\n",
(unsigned long)mstart,
(unsigned long)mend,
(mtype == LB_MEM_RAM)?"RAM":"Reserved");
}
return 0;
}
return 1;
}
static const unsigned long lb_start = (unsigned long)&_ram_seg;
static const unsigned long lb_end = (unsigned long)&_eram_seg;
static int overlaps_coreboot(struct segment *seg)
{
unsigned long start, end;
start = seg->s_dstaddr;
end = start + seg->s_memsz;
return !((end <= lb_start) || (start >= lb_end));
}
static void relocate_segment(unsigned long buffer, struct segment *seg)
{
/* Modify all segments that want to load onto coreboot
* to load onto the bounce buffer instead.
*/
unsigned long start, middle, end;
printk_spew("lb: [0x%016lx, 0x%016lx)\n",
lb_start, lb_end);
/* I don't conflict with coreboot so get out of here */
if (!overlaps_coreboot(seg))
return;
start = seg->s_dstaddr;
middle = start + seg->s_filesz;
end = start + seg->s_memsz;
printk_spew("segment: [0x%016lx, 0x%016lx, 0x%016lx)\n",
start, middle, end);
if (seg->compression == CBFS_COMPRESS_NONE) {
/* Slice off a piece at the beginning
* that doesn't conflict with coreboot.
*/
if (start < lb_start) {
struct segment *new;
unsigned long len = lb_start - start;
new = malloc(sizeof(*new));
*new = *seg;
new->s_memsz = len;
seg->s_memsz -= len;
seg->s_dstaddr += len;
seg->s_srcaddr += len;
if (seg->s_filesz > len) {
new->s_filesz = len;
seg->s_filesz -= len;
} else {
seg->s_filesz = 0;
}
/* Order by stream offset */
new->next = seg;
new->prev = seg->prev;
seg->prev->next = new;
seg->prev = new;
/* Order by original program header order */
new->phdr_next = seg;
new->phdr_prev = seg->phdr_prev;
seg->phdr_prev->phdr_next = new;
seg->phdr_prev = new;
/* compute the new value of start */
start = seg->s_dstaddr;
printk_spew(" early: [0x%016lx, 0x%016lx, 0x%016lx)\n",
new->s_dstaddr,
new->s_dstaddr + new->s_filesz,
new->s_dstaddr + new->s_memsz);
}
/* Slice off a piece at the end
* that doesn't conflict with coreboot
*/
if (end > lb_end) {
unsigned long len = lb_end - start;
struct segment *new;
new = malloc(sizeof(*new));
*new = *seg;
seg->s_memsz = len;
new->s_memsz -= len;
new->s_dstaddr += len;
new->s_srcaddr += len;
if (seg->s_filesz > len) {
seg->s_filesz = len;
new->s_filesz -= len;
} else {
new->s_filesz = 0;
}
/* Order by stream offset */
new->next = seg->next;
new->prev = seg;
seg->next->prev = new;
seg->next = new;
/* Order by original program header order */
new->phdr_next = seg->phdr_next;
new->phdr_prev = seg;
seg->phdr_next->phdr_prev = new;
seg->phdr_next = new;
printk_spew(" late: [0x%016lx, 0x%016lx, 0x%016lx)\n",
new->s_dstaddr,
new->s_dstaddr + new->s_filesz,
new->s_dstaddr + new->s_memsz);
}
}
/* Now retarget this segment onto the bounce buffer */
/* sort of explanation: the buffer is a 1:1 mapping to coreboot.
* so you will make the dstaddr be this buffer, and it will get copied
* later to where coreboot lives.
*/
seg->s_dstaddr = buffer + (seg->s_dstaddr - lb_start);
printk_spew(" bounce: [0x%016lx, 0x%016lx, 0x%016lx)\n",
seg->s_dstaddr,
seg->s_dstaddr + seg->s_filesz,
seg->s_dstaddr + seg->s_memsz);
}
static int build_self_segment_list(
struct segment *head,
struct lb_memory *mem,
struct cbfs_payload *payload, u32 *entry)
{
struct segment *new;
struct segment *ptr;
struct cbfs_payload_segment *segment, *first_segment;
memset(head, 0, sizeof(*head));
head->phdr_next = head->phdr_prev = head;
head->next = head->prev = head;
first_segment = segment = &payload->segments;
while(1) {
printk_debug("Loading segment from rom address 0x%p\n", segment);
switch(segment->type) {
case PAYLOAD_SEGMENT_PARAMS:
printk_debug(" parameter section (skipped)\n");
segment++;
continue;
case PAYLOAD_SEGMENT_CODE:
case PAYLOAD_SEGMENT_DATA:
printk_debug(" %s (compression=%x)\n",
segment->type == PAYLOAD_SEGMENT_CODE ? "code" : "data",
ntohl(segment->compression));
new = malloc(sizeof(*new));
new->s_dstaddr = ntohl((u32) segment->load_addr);
new->s_memsz = ntohl(segment->mem_len);
new->compression = ntohl(segment->compression);
new->s_srcaddr = (u32) ((unsigned char *) first_segment) + ntohl(segment->offset);
new->s_filesz = ntohl(segment->len);
printk_debug(" New segment dstaddr 0x%lx memsize 0x%lx srcaddr 0x%lx filesize 0x%lx\n",
new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
/* Clean up the values */
if (new->s_filesz > new->s_memsz) {
new->s_filesz = new->s_memsz;
}
printk_debug(" (cleaned up) New segment addr 0x%lx size 0x%lx offset 0x%lx filesize 0x%lx\n",
new->s_dstaddr, new->s_memsz, new->s_srcaddr, new->s_filesz);
break;
case PAYLOAD_SEGMENT_BSS:
printk_debug(" BSS 0x%p (%d byte)\n", (void *) ntohl((u32) segment->load_addr),
ntohl(segment->mem_len));
new = malloc(sizeof(*new));
new->s_filesz = 0;
new->s_dstaddr = ntohl((u32) segment->load_addr);
new->s_memsz = ntohl(segment->mem_len);
break;
case PAYLOAD_SEGMENT_ENTRY:
printk_debug(" Entry Point 0x%p\n", (void *) ntohl((u32) segment->load_addr));
*entry = ntohl((u32) segment->load_addr);
/* Per definition, a payload always has the entry point
* as last segment. Thus, we use the occurence of the
* entry point as break condition for the loop.
* Can we actually just look at the number of section?
*/
return 1;
default:
/* We found something that we don't know about. Throw
* hands into the sky and run away!
*/
printk_emerg("Bad segment type %x\n", segment->type);
return -1;
}
segment++;
// FIXME: Explain what this is
for(ptr = head->next; ptr != head; ptr = ptr->next) {
if (new->s_srcaddr < ntohl((u32) segment->load_addr))
break;
}
/* Order by stream offset */
new->next = ptr;
new->prev = ptr->prev;
ptr->prev->next = new;
ptr->prev = new;
/* Order by original program header order */
new->phdr_next = head;
new->phdr_prev = head->phdr_prev;
head->phdr_prev->phdr_next = new;
head->phdr_prev = new;
}
return 1;
}
static int load_self_segments(
struct segment *head,
struct lb_memory *mem,
struct cbfs_payload *payload)
{
struct segment *ptr;
unsigned long bounce_high = lb_end;
for(ptr = head->next; ptr != head; ptr = ptr->next) {
if (!overlaps_coreboot(ptr)) continue;
if (ptr->s_dstaddr + ptr->s_memsz > bounce_high)
bounce_high = ptr->s_dstaddr + ptr->s_memsz;
}
get_bounce_buffer(mem, bounce_high - lb_start);
if (!bounce_buffer) {
printk_err("Could not find a bounce buffer...\n");
return 0;
}
for(ptr = head->next; ptr != head; ptr = ptr->next) {
/* Verify the memory addresses in the segment are valid */
if (!valid_area(mem, bounce_buffer, ptr->s_dstaddr, ptr->s_memsz))
return 0;
}
for(ptr = head->next; ptr != head; ptr = ptr->next) {
unsigned char *dest, *src;
printk_debug("Loading Segment: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
/* Modify the segment to load onto the bounce_buffer if necessary.
*/
relocate_segment(bounce_buffer, ptr);
printk_debug("Post relocation: addr: 0x%016lx memsz: 0x%016lx filesz: 0x%016lx\n",
ptr->s_dstaddr, ptr->s_memsz, ptr->s_filesz);
/* Compute the boundaries of the segment */
dest = (unsigned char *)(ptr->s_dstaddr);
src = (unsigned char *)(ptr->s_srcaddr);
/* Copy data from the initial buffer */
if (ptr->s_filesz) {
unsigned char *middle, *end;
size_t len;
len = ptr->s_filesz;
switch(ptr->compression) {
case CBFS_COMPRESS_LZMA: {
printk_debug("using LZMA\n");
len = ulzma(src, dest);
break;
}
#if CONFIG_COMPRESSED_PAYLOAD_NRV2B==1
case CBFS_COMPRESS_NRV2B: {
printk_debug("using NRV2B\n");
unsigned long unrv2b(u8 *src, u8 *dst, unsigned long *ilen_p);
unsigned long tmp;
len = unrv2b(src, dest, &tmp);
break;
}
#endif
case CBFS_COMPRESS_NONE: {
printk_debug("it's not compressed!\n");
memcpy(dest, src, len);
break;
}
default:
printk_info( "CBFS: Unknown compression type %d\n", ptr->compression);
return -1;
}
end = dest + ptr->s_memsz;
middle = dest + len;
printk_spew("[ 0x%016lx, %016lx, 0x%016lx) <- %016lx\n",
(unsigned long)dest,
(unsigned long)middle,
(unsigned long)end,
(unsigned long)src);
/* Zero the extra bytes between middle & end */
if (middle < end) {
printk_debug("Clearing Segment: addr: 0x%016lx memsz: 0x%016lx\n",
(unsigned long)middle, (unsigned long)(end - middle));
/* Zero the extra bytes */
memset(middle, 0, end - middle);
}
/* Copy the data that's outside the area that shadows coreboot_ram */
printk_debug("dest %lx, end %lx, bouncebuffer %lx\n", dest, end, bounce_buffer);
if ((unsigned long)end > bounce_buffer) {
if ((unsigned long)dest < bounce_buffer) {
unsigned long from = dest;
unsigned long to = lb_start-(bounce_buffer-(unsigned long)dest);
unsigned long amount = bounce_buffer-(unsigned long)dest;
printk_debug("move prefix around: from %lx, to %lx, amount: %lx\n", from, to, amount);
memcpy(to, from, amount);
}
if ((unsigned long)end > bounce_buffer + (lb_end - lb_start)) {
unsigned long from = bounce_buffer + (lb_end - lb_start);
unsigned long to = lb_end;
unsigned long amount = end - from;
printk_debug("move suffix around: from %lx, to %lx, amount: %lx\n", from, to, amount);
memcpy(to, from, amount);
}
}
}
}
return 1;
}
static int selfboot(struct lb_memory *mem, struct cbfs_payload *payload)
{
u32 entry=0;
struct segment head;
/* Preprocess the self segments */
if (!build_self_segment_list(&head, mem, payload, &entry))
goto out;
/* Load the segments */
if (!load_self_segments(&head, mem, payload))
goto out;
printk_spew("Loaded segments\n");
/* Reset to booting from this image as late as possible */
boot_successful();
printk_debug("Jumping to boot code at %x\n", entry);
post_code(0xfe);
/* Jump to kernel */
jmp_to_elf_entry((void*)entry, bounce_buffer, bounce_size);
return 1;
out:
return 0;
}