blob: 21a16d27abe0f3f8e96833dd4a70700e27021802 [file] [log] [blame]
/*
* Optimized assembly for low-level CPU operations on ARMv7 processors.
*
* Cache flushing code based off sys/arch/arm/arm/cpufunc_asm_armv7.S in NetBSD
*
* Copyright (c) 2010 Per Odlund <per.odlund@armagedon.se>
* Copyright (c) 2014 Google Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <arch/asm.h>
#include <rules.h>
/*
* Dcache invalidations by set/way work by passing a [way:sbz:set:sbz:level:0]
* bitfield in a register to the appropriate MCR instruction. This algorithm
* works by initializing a bitfield with the highest-numbered set and way, and
* generating a "set decrement" and a "way decrement". The former just contains
* the LSB of the set field, but the latter contains the LSB of the way field
* minus the highest valid set field... such that when you subtract it from a
* [way:0:level] field you end up with a [way - 1:highest_set:level] field
* through the magic of double subtraction. It's quite ingenius, really.
* Takes care to only use r0-r3 and ip so it's pefectly ABI-compatible without
* needing to write to memory.
*
* THIS FUNCTION MUST PRESERVE THE VALUE OF r10
*/
.macro dcache_apply_all crm
dsb
mov r3, #-2 @ initialize level so that we start at 0
1: @next_level
add r3, r3, #2 @ increment level
mrc p15, 1, r0, c0, c0, 1 @ read CLIDR
and ip, r0, #0x07000000 @ narrow to LoC
lsr ip, ip, #23 @ left align LoC (low 4 bits)
cmp r3, ip @ compare
bge 3f @done @ else fall through (r0 == CLIDR)
add r2, r3, r3, lsr #1 @ r2 = (level << 1) * 3 / 2
mov r1, r0, lsr r2 @ r1 = cache type
and r1, r1, #7
cmp r1, #2 @ is it data or i&d?
blt 1b @next_level @ nope, skip level
mcr p15, 2, r3, c0, c0, 0 @ select cache level
isb
mrc p15, 1, r0, c0, c0, 0 @ read CCSIDR
ubfx ip, r0, #0, #3 @ get linesize from CCSIDR
add ip, ip, #4 @ apply bias
ubfx r2, r0, #13, #15 @ get numsets - 1 from CCSIDR
lsl r2, r2, ip @ shift to set position
orr r3, r3, r2 @ merge set into way/set/level
mov r1, #1
lsl r1, r1, ip @ r1 = set decr
ubfx ip, r0, #3, #10 @ get numways - 1 from [to be discarded] CCSIDR
clz r2, ip @ number of bits to MSB of way
lsl ip, ip, r2 @ shift by that into way position
mov r0, #1
lsl r2, r0, r2 @ r2 now contains the way decr
mov r0, r3 @ get sets/level (no way yet)
orr r3, r3, ip @ merge way into way/set/level
bfc r0, #0, #4 @ clear low 4 bits (level) to get numset - 1
sub r2, r2, r0 @ subtract from way decr
/* r3 = ways/sets/level, r2 = way decr, r1 = set decr, r0 and ip are free */
2: mcr p15, 0, r3, c7, \crm, 2 @ writeback and/or invalidate line
cmp r3, #15 @ are we done with this level (way/set == 0)
bls 1b @next_level @ yes, go to next level
lsr r0, r3, #4 @ clear level bits leaving only way/set bits
lsls r0, r0, #14 @ clear way bits leaving only set bits
subne r3, r3, r1 @ non-zero?, decrement set #
subeq r3, r3, r2 @ zero?, decrement way # and restore set count
b 2b
3: @done
mov r0, #0 @ default back to cache level 0
mcr p15, 2, r0, c0, c0, 0 @ select cache level
dsb
isb
bx lr
.endm
/*
* Bring an ARM processor we just gained control of (e.g. from IROM) into a
* known state regarding caches/SCTLR. Completely cleans and invalidates
* icache/dcache, disables MMU and dcache (if active), and enables unaligned
* accesses, icache and branch prediction (if inactive). Clobbers r4 and r5.
*
* THIS FUNCTION MUST PRESERVE THE VALUE OF r10
*/
ENTRY(arm_init_caches)
/* r4: SCTLR, return address: r5 (stay valid for the whole function) */
mov r5, lr
mrc p15, 0, r4, c1, c0, 0
/* Activate ICache (12) and Branch Prediction (11) already for speed */
orr r4, # (1 << 11) | (1 << 12)
mcr p15, 0, r4, c1, c0, 0
/* Flush and invalidate dcache in ascending order */
bl dcache_invalidate_all
#if ENV_ARMV7_A
/* Deactivate MMU (0), Alignment Check (1) and DCache (2) */
and r4, # ~(1 << 0) & ~(1 << 1) & ~(1 << 2)
mcr p15, 0, r4, c1, c0, 0
/* Invalidate icache and TLB for good measure */
mcr p15, 0, r0, c7, c5, 0
mcr p15, 0, r0, c8, c7, 0
#endif
#if ENV_ARMV7_R
/* Deactivate Alignment Check (1) and DCache (2) */
and r4, # ~(1 << 1) & ~(1 << 2)
mcr p15, 0, r4, c1, c0, 0
/* Invalidate icache for good measure */
mcr p15, 0, r0, c7, c5, 0
#endif
dsb
isb
bx r5
ENDPROC(arm_init_caches)
ENTRY(dcache_invalidate_all)
dcache_apply_all crm=c6
ENDPROC(dcache_invalidate_all)
ENTRY(dcache_clean_all)
dcache_apply_all crm=c10
ENDPROC(dcache_clean_all)
ENTRY(dcache_clean_invalidate_all)
dcache_apply_all crm=c14
ENDPROC(dcache_clean_invalidate_all)