blob: 338156f8ed422f2e95c42565aa0a19ed10c9c23f [file] [log] [blame]
/******************************************************************************
* Copyright (c) 2004, 2008 IBM Corporation
* Copyright (c) 2008, 2009 Pattrick Hueper <phueper@hueper.net>
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer
* in the documentation and/or other materials provided with the
* distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* Contributors:
* IBM Corporation - initial implementation
*****************************************************************************/
#include <types.h>
#include "compat/rtas.h"
#include "biosemu.h"
#include "mem.h"
#include "device.h"
#include "debug.h"
#include "pmm.h"
#include "interrupt.h"
#include <x86emu/x86emu.h>
#include "../x86emu/prim_ops.h"
#include <device/pci.h>
#include <device/pci_ops.h>
//setup to run the code at the address, that the Interrupt Vector points to...
static void
setupInt(int intNum)
{
DEBUG_PRINTF_INTR("%s(%x): executing interrupt handler @%08x\n",
__func__, intNum, my_rdl(intNum * 4));
// push current R_FLG... will be popped by IRET
push_word((u16) M.x86.R_FLG);
CLEAR_FLAG(F_IF);
CLEAR_FLAG(F_TF);
// push current CS:IP to the stack, will be popped by IRET
push_word(M.x86.R_CS);
push_word(M.x86.R_IP);
// set CS:IP to the interrupt handler address... so the next executed instruction will
// be the interrupt handler
M.x86.R_CS = my_rdw(intNum * 4 + 2);
M.x86.R_IP = my_rdw(intNum * 4);
}
// handle int10 (VGA BIOS Interrupt)
static void
handleInt10(void)
{
// the data for INT10 is stored in BDA (0000:0400h) offset 49h-66h
// function number in AH
//DEBUG_PRINTF_CS_IP("%s:\n", __func__);
//x86emu_dump_xregs();
//if ((M.x86.R_IP == 0x32c2) && (M.x86.R_SI == 0x1ce2)){
//X86EMU_trace_on();
//M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
//}
switch (M.x86.R_AH) {
case 0x00:
// set video mode
// BDA offset 49h is current video mode
my_wrb(0x449, M.x86.R_AL);
if (M.x86.R_AL > 7)
M.x86.R_AL = 0x20;
else if (M.x86.R_AL == 6)
M.x86.R_AL = 0x3f;
else
M.x86.R_AL = 0x30;
break;
case 0x01:
// set cursor shape
// ignore
break;
case 0x02:
// set cursor position
// BH: pagenumber, DX: cursor_pos (DH:row, DL:col)
// BDA offset 50h-60h are 8 cursor position words for
// eight possible video pages
my_wrw(0x450 + (M.x86.R_BH * 2), M.x86.R_DX);
break;
case 0x03:
//get cursor position
// BH: pagenumber
// BDA offset 50h-60h are 8 cursor position words for
// eight possible video pages
M.x86.R_AX = 0;
M.x86.R_CH = 0; // start scan line ???
M.x86.R_CL = 0; // end scan line ???
M.x86.R_DX = my_rdw(0x450 + (M.x86.R_BH * 2));
break;
case 0x05:
// set active page
// BDA offset 62h is current page number
my_wrb(0x462, M.x86.R_AL);
break;
case 0x06:
//scroll up windows
break;
case 0x07:
//scroll down windows
break;
case 0x08:
//read character and attribute at position
M.x86.R_AH = 0x07; // white-on-black
M.x86.R_AL = 0x20; // a space...
break;
case 0x09:
// write character and attribute
//AL: char, BH: page number, BL: attribute, CX: number of times to write
//BDA offset 62h is current page number
CHECK_DBG(DEBUG_PRINT_INT10) {
u32 i = 0;
if (M.x86.R_BH == my_rdb(0x462)) {
for (i = 0; i < M.x86.R_CX; i++)
printf("%c", M.x86.R_AL);
}
}
break;
case 0x0a:
// write character
//AL: char, BH: page number, BL: attribute, CX: number of times to write
//BDA offset 62h is current page number
CHECK_DBG(DEBUG_PRINT_INT10) {
u32 i = 0;
if (M.x86.R_BH == my_rdb(0x462)) {
for (i = 0; i < M.x86.R_CX; i++)
printf("%c", M.x86.R_AL);
}
}
break;
case 0x0e:
// teletype output: write character and advance cursor...
//AL: char, BH: page number, BL: attribute
//BDA offset 62h is current page number
CHECK_DBG(DEBUG_PRINT_INT10) {
// we ignore the pagenumber on this call...
//if (M.x86.R_BH == my_rdb(0x462))
{
printf("%c", M.x86.R_AL);
// for debugging, to read all lines
//if (M.x86.R_AL == 0xd) // carriage return
// printf("\n");
}
}
break;
case 0x0f:
// get video mode
// BDA offset 49h is current video mode
// BDA offset 62h is current page number
// BDA offset 4ah is columns on screen
M.x86.R_AH = 80; //number of character columns... we hardcode it to 80
M.x86.R_AL = my_rdb(0x449);
M.x86.R_BH = my_rdb(0x462);
break;
default:
printf("%s(): unknown function (%x) for int10 handler.\n",
__func__, M.x86.R_AH);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
HALT_SYS();
break;
}
}
// this table translates ASCII chars into their XT scan codes:
static u8 keycode_table[256] = {
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0 - 7
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 8 - 15
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 16 - 23
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 24 - 31
0x39, 0x02, 0x28, 0x04, 0x05, 0x06, 0x08, 0x28, // 32 - 39
0x0a, 0x0b, 0x09, 0x2b, 0x33, 0x0d, 0x34, 0x35, // 40 - 47
0x0b, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, // 48 - 55
0x09, 0x0a, 0x27, 0x27, 0x33, 0x2b, 0x34, 0x35, // 56 - 63
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 64 - 71
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 72 - 79
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 80 - 87
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 88 - 95
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 96 - 103
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 104 - 111
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 112 - 119
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 120 - 127
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ...
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
}
;
static void
translate_keycode(u64 * keycode)
{
u8 scan_code = 0;
u8 char_code = 0;
if (*keycode < 256) {
scan_code = keycode_table[*keycode];
char_code = (u8) * keycode & 0xff;
} else {
switch (*keycode) {
case 0x1b50:
// F1
scan_code = 0x3b;
char_code = 0x0;
break;
default:
printf("%s(): unknown multibyte keycode: %llx\n",
__func__, *keycode);
break;
}
}
//assemble scan/char code in keycode
*keycode = (u64) ((((u16) scan_code) << 8) | char_code);
}
// handle int16 (Keyboard BIOS Interrupt)
static void
handleInt16(void)
{
// keyboard buffer is in BIOS Memory Area:
// offset 0x1a (WORD) pointer to next char in keybuffer
// offset 0x1c (WORD) pointer to next insert slot in keybuffer
// offset 0x1e-0x3e: 16 WORD Ring Buffer
// since we currently always read the char from the FW buffer,
// we misuse the ring buffer, we use it as pointer to a u64 that stores
// multi-byte keys (e.g. special keys in VT100 terminal)
// and as long as a key is available (not 0) we don't read further keys
u64 *keycode = (u64 *) (M.mem_base + 0x41e);
s8 c;
// function number in AH
DEBUG_PRINTF_INTR("%s(): Keyboard Interrupt: function: %x.\n",
__func__, M.x86.R_AH);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n", M.x86.R_AX,
M.x86.R_BX, M.x86.R_CX, M.x86.R_DX);
switch (M.x86.R_AH) {
case 0x00:
// get keystroke
if (*keycode) {
M.x86.R_AX = (u16) * keycode;
// clear keycode
*keycode = 0;
} else {
M.x86.R_AH = 0x61; // scancode for space key
M.x86.R_AL = 0x20; // a space
}
break;
case 0x01:
// check keystroke
// ZF set = no keystroke
// read first byte of key code
if (*keycode) {
// already read, but not yet taken
CLEAR_FLAG(F_ZF);
M.x86.R_AX = (u16) * keycode;
} else {
/* TODO: we need getchar... */
c = -1; //getchar();
if (c == -1) {
// no key available
SET_FLAG(F_ZF);
} else {
*keycode = c;
// since after an ESC it may take a while to receive the next char,
// we send something that is not shown on the screen, and then try to get
// the next char
// TODO: only after ESC?? what about other multibyte keys
printf("tt%c%c", 0x08, 0x08); // 0x08 == Backspace
/* TODO: we need getchar... */
while ((c = -1 /*getchar()*/) != -1) {
*keycode = (*keycode << 8) | c;
DEBUG_PRINTF(" key read: %0llx\n",
*keycode);
}
translate_keycode(keycode);
DEBUG_PRINTF(" translated key: %0llx\n",
*keycode);
if (*keycode == 0) {
//not found
SET_FLAG(F_ZF);
} else {
CLEAR_FLAG(F_ZF);
M.x86.R_AX = (u16) * keycode;
//X86EMU_trace_on();
//M.x86.debug &= ~DEBUG_DECODE_NOPRINT_F;
}
}
}
break;
default:
printf("%s(): unknown function (%x) for int16 handler.\n",
__func__, M.x86.R_AH);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
HALT_SYS();
break;
}
}
// handle int1a (PCI BIOS Interrupt)
static void
handleInt1a(void)
{
// function number in AX
u8 bus, devfn, offs;
struct device *dev = NULL;
switch (M.x86.R_AX) {
case 0xb101:
// Installation check
CLEAR_FLAG(F_CF); // clear CF
M.x86.R_EDX = 0x20494350; // " ICP" endian swapped "PCI "
M.x86.R_AL = 0x1; // Config Space Mechanism 1 supported
M.x86.R_BX = 0x0210; // PCI Interface Level Version 2.10
M.x86.R_CL = 0xff; // number of last PCI Bus in system TODO: check!
break;
case 0xb102:
// Find PCI Device
// device_id in CX, vendor_id in DX
// device index in SI (i.e. if multiple devices with same vendor/device id
// are connected). We currently only support device index 0
//
DEBUG_PRINTF_INTR("%s(): function: %x: PCI Find Device\n",
__func__, M.x86.R_AX);
/* FixME: support SI != 0 */
// only allow the device to find itself...
if ((M.x86.R_CX == bios_device.pci_device_id)
&& (M.x86.R_DX == bios_device.pci_vendor_id)
// device index must be 0
&& (M.x86.R_SI == 0)) {
dev = bios_device.dev;
M.x86.R_BH = bios_device.bus;
M.x86.R_BL = bios_device.devfn;
} else if (CONFIG(YABEL_PCI_ACCESS_OTHER_DEVICES)) {
dev = dev_find_device(M.x86.R_DX, M.x86.R_CX, 0);
if (dev != NULL) {
M.x86.R_BH = dev->bus->secondary;
M.x86.R_BL = dev->path.pci.devfn;
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Find Device --> 0x%04x\n",
__func__, M.x86.R_AX, M.x86.R_BX);
}
}
if (dev == NULL) {
DEBUG_PRINTF_INTR
("%s(): function %x: invalid device/vendor/device index! (%04x/%04x/%02x expected: %04x/%04x/00)\n",
__func__, M.x86.R_AX, M.x86.R_CX, M.x86.R_DX,
M.x86.R_SI, bios_device.pci_device_id,
bios_device.pci_vendor_id);
SET_FLAG(F_CF);
M.x86.R_AH = 0x86; // return code: device not found
return;
}
CLEAR_FLAG(F_CF);
M.x86.R_AH = 0x00; // return code: success
break;
case 0xb108: //read configuration byte
case 0xb109: //read configuration word
case 0xb10a: //read configuration dword
bus = M.x86.R_BH;
devfn = M.x86.R_BL;
offs = M.x86.R_DI;
DEBUG_PRINTF_INTR("%s(): function: %x: PCI Config Read from device: bus: %02x, devfn: %02x, offset: %02x\n",
__func__, M.x86.R_AX, bus, devfn, offs);
if ((bus == bios_device.bus) && (devfn == bios_device.devfn)) {
dev = bios_device.dev;
} else if (CONFIG(YABEL_PCI_ACCESS_OTHER_DEVICES)) {
dev = pcidev_path_on_bus(bus, devfn);
DEBUG_PRINTF_INTR("%s(): function: %x: pcidev_path_on_bus() returned: %s\n",
__func__, M.x86.R_AX, dev_path(dev));
}
if (dev == NULL) {
printf
("%s(): Config read access invalid device! bus: %02x (%02x), devfn: %02x (%02x), offs: %02x\n",
__func__, bus, bios_device.bus, devfn,
bios_device.devfn, offs);
SET_FLAG(F_CF);
M.x86.R_AH = 0x87; //return code: bad pci register
HALT_SYS();
return;
}
switch (M.x86.R_AX) {
case 0xb108:
M.x86.R_CL =
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_read_config8(dev, offs);
#else
(u8) rtas_pci_config_read(bios_device.puid, 1,
bus, devfn,
offs);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Read @%02x --> 0x%02x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CL);
break;
case 0xb109:
M.x86.R_CX =
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_read_config16(dev, offs);
#else
(u16) rtas_pci_config_read(bios_device.puid, 2,
bus, devfn,
offs);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Read @%02x --> 0x%04x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CX);
break;
case 0xb10a:
M.x86.R_ECX =
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_read_config32(dev, offs);
#else
(u32) rtas_pci_config_read(bios_device.puid, 4,
bus, devfn,
offs);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Read @%02x --> 0x%08x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_ECX);
break;
}
CLEAR_FLAG(F_CF);
M.x86.R_AH = 0x0; // return code: success
break;
case 0xb10b: //write configuration byte
case 0xb10c: //write configuration word
case 0xb10d: //write configuration dword
bus = M.x86.R_BH;
devfn = M.x86.R_BL;
offs = M.x86.R_DI;
if ((bus == bios_device.bus) && (devfn == bios_device.devfn)) {
dev = bios_device.dev;
}
if (dev == NULL) {
printf
("%s(): Config read access invalid! bus: %x (%x), devfn: %x (%x), offs: %x\n",
__func__, bus, bios_device.bus, devfn,
bios_device.devfn, offs);
SET_FLAG(F_CF);
M.x86.R_AH = 0x87; //return code: bad pci register
HALT_SYS();
return;
}
switch (M.x86.R_AX) {
case 0xb10b:
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_write_config8(dev, offs, M.x86.R_CL);
#else
rtas_pci_config_write(bios_device.puid, 1, bus,
devfn, offs, M.x86.R_CL);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Write @%02x <-- 0x%02x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CL);
break;
case 0xb10c:
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_write_config16(dev, offs, M.x86.R_CX);
#else
rtas_pci_config_write(bios_device.puid, 2, bus,
devfn, offs, M.x86.R_CX);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Write @%02x <-- 0x%04x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_CX);
break;
case 0xb10d:
#if CONFIG(PCI_OPTION_ROM_RUN_YABEL)
pci_write_config32(dev, offs, M.x86.R_ECX);
#else
rtas_pci_config_write(bios_device.puid, 4, bus,
devfn, offs, M.x86.R_ECX);
#endif
DEBUG_PRINTF_INTR
("%s(): function %x: PCI Config Write @%02x <-- 0x%08x\n",
__func__, M.x86.R_AX, offs,
M.x86.R_ECX);
break;
}
CLEAR_FLAG(F_CF);
M.x86.R_AH = 0x0; // return code: success
break;
default:
printf("%s(): unknown function (%x) for int1a handler.\n",
__func__, M.x86.R_AX);
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
HALT_SYS();
break;
}
}
// main Interrupt Handler routine, should be registered as x86emu interrupt handler
void
handleInterrupt(int intNum)
{
u8 int_handled = 0;
#ifndef DEBUG_PRINT_INT10
// this printf makes output by int 10 unreadable...
// so we only enable it, if int10 print is disabled
DEBUG_PRINTF_INTR("%s(%x)\n", __func__, intNum);
#endif
/* check whether this interrupt has a function pointer set in yabel_intFuncArray and run that */
if (yabel_intFuncArray[intNum]) {
DEBUG_PRINTF_INTR("%s(%x) intHandler overridden, calling it...\n", __func__, intNum);
int_handled = (*yabel_intFuncArray[intNum])();
} else {
switch (intNum) {
case 0x10: //BIOS video interrupt
case 0x42: // INT 10h relocated by EGA/VGA BIOS
case 0x6d: // INT 10h relocated by VGA BIOS
// get interrupt vector from IDT (4 bytes per Interrupt starting at address 0
if ((my_rdl(intNum * 4) == 0xF000F065) || //F000:F065 is default BIOS interrupt handler address
(my_rdl(intNum * 4) == 0xF4F4F4F4)) //invalid
{
#if 0
// ignore interrupt...
DEBUG_PRINTF_INTR
("%s(%x): invalid interrupt Vector (%08x) found, interrupt ignored...\n",
__func__, intNum, my_rdl(intNum * 4));
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
//HALT_SYS();
#endif
handleInt10();
int_handled = 1;
}
break;
case 0x16:
// Keyboard BIOS Interrupt
handleInt16();
int_handled = 1;
break;
case 0x1a:
// PCI BIOS Interrupt
handleInt1a();
int_handled = 1;
break;
case PMM_INT_NUM:
/* The self-defined PMM INT number, this is called by
* the code in PMM struct, and it is handled by
* pmm_handleInt()
*/
pmm_handleInt();
int_handled = 1;
break;
default:
printf("Interrupt %#x (Vector: %x) not implemented\n", intNum,
my_rdl(intNum * 4));
DEBUG_PRINTF_INTR("AX=%04x BX=%04x CX=%04x DX=%04x\n",
M.x86.R_AX, M.x86.R_BX, M.x86.R_CX,
M.x86.R_DX);
int_handled = 1;
HALT_SYS();
break;
}
}
// if we did not handle the interrupt, jump to the interrupt vector...
if (!int_handled) {
setupInt(intNum);
}
}
// prepare and execute Interrupt 10 (VGA Interrupt)
void
runInt10(void)
{
// Initialize stack and data segment
M.x86.R_SS = STACK_SEGMENT;
M.x86.R_DS = DATA_SEGMENT;
M.x86.R_SP = STACK_START_OFFSET;
// push a HLT instruction and a pointer to it onto the stack
// any return will pop the pointer and jump to the HLT, thus
// exiting (more or less) cleanly
push_word(0xf4f4); //F4=HLT
//push_word(M.x86.R_SS);
//push_word(M.x86.R_SP + 2);
// setupInt will push the current CS and IP to the stack to return to it,
// but we want to halt, so set CS:IP to the HLT instruction we just pushed
// to the stack
M.x86.R_CS = M.x86.R_SS;
M.x86.R_IP = M.x86.R_SP; // + 4;
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
CHECK_DBG(DEBUG_JMP) {
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACECALL_F;
M.x86.debug |= DEBUG_TRACECALL_REGS_F;
}
setupInt(0x10);
DEBUG_PRINTF_INTR("%s(): starting execution of INT10...\n",
__func__);
X86EMU_exec();
DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
}
// prepare and execute Interrupt 13 (Disk Interrupt)
void
runInt13(void)
{
// Initialize stack and data segment
M.x86.R_SS = STACK_SEGMENT;
M.x86.R_DS = DATA_SEGMENT;
M.x86.R_SP = STACK_START_OFFSET;
// push a HLT instruction and a pointer to it onto the stack
// any return will pop the pointer and jump to the HLT, thus
// exiting (more or less) cleanly
push_word(0xf4f4); //F4=HLT
//push_word(M.x86.R_SS);
//push_word(M.x86.R_SP + 2);
// setupInt will push the current CS and IP to the stack to return to it,
// but we want to halt, so set CS:IP to the HLT instruction we just pushed
// to the stack
M.x86.R_CS = M.x86.R_SS;
M.x86.R_IP = M.x86.R_SP;
CHECK_DBG(DEBUG_TRACE_X86EMU) {
X86EMU_trace_on();
}
CHECK_DBG(DEBUG_JMP) {
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACEJMP_REGS_F;
M.x86.debug |= DEBUG_TRACECALL_F;
M.x86.debug |= DEBUG_TRACECALL_REGS_F;
}
setupInt(0x13);
DEBUG_PRINTF_INTR("%s(): starting execution of INT13...\n",
__func__);
X86EMU_exec();
DEBUG_PRINTF_INTR("%s(): execution finished\n", __func__);
}