blob: 524284a077d6cbdac9537479b13b9e54f5d65bce [file] [log] [blame]
/*
* This file is part of the coreboot project.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; version 2 of
* the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#ifndef __DEVICE_MMIO_H__
#define __DEVICE_MMIO_H__
#include <arch/mmio.h>
#include <endian.h>
#include <types.h>
#define __clrsetbits_impl(bits, addr, clear, set) write##bits(addr, \
(read##bits(addr) & ~((uint##bits##_t)(clear))) | (set))
#define clrsetbits8(addr, clear, set) __clrsetbits_impl(8, addr, clear, set)
#define clrsetbits16(addr, clear, set) __clrsetbits_impl(16, addr, clear, set)
#define clrsetbits32(addr, clear, set) __clrsetbits_impl(32, addr, clear, set)
#define clrsetbits64(addr, clear, set) __clrsetbits_impl(64, addr, clear, set)
#define setbits8(addr, set) clrsetbits8(addr, 0, set)
#define setbits16(addr, set) clrsetbits16(addr, 0, set)
#define setbits32(addr, set) clrsetbits32(addr, 0, set)
#define setbits64(addr, set) clrsetbits64(addr, 0, set)
#define clrbits8(addr, clear) clrsetbits8(addr, clear, 0)
#define clrbits16(addr, clear) clrsetbits16(addr, clear, 0)
#define clrbits32(addr, clear) clrsetbits32(addr, clear, 0)
#define clrbits64(addr, clear) clrsetbits64(addr, clear, 0)
/*
* Reads a transfer buffer from 32-bit FIFO registers. fifo_stride is the
* distance in bytes between registers (e.g. pass 4 for a normal array of 32-bit
* registers or 0 to read everything from the same register). fifo_width is
* the amount of bytes read per register (can be 1 through 4).
*/
void buffer_from_fifo32(void *buffer, size_t size, void *fifo,
int fifo_stride, int fifo_width);
/*
* Version of buffer_to_fifo32() that can prepend a prefix of up to fifo_width
* size to the transfer. This is often useful for protocols where a command word
* precedes the actual payload data. The prefix must be packed in the low-order
* bytes of the 'prefix' u32 parameter and any high-order bytes exceeding prefsz
* must be 0. Note that 'size' counts total bytes written, including 'prefsz'.
*/
void buffer_to_fifo32_prefix(void *buffer, u32 prefix, int prefsz, size_t size,
void *fifo, int fifo_stride, int fifo_width);
/*
* Writes a transfer buffer into 32-bit FIFO registers. fifo_stride is the
* distance in bytes between registers (e.g. pass 4 for a normal array of 32-bit
* registers or 0 to write everything into the same register). fifo_width is
* the amount of bytes written per register (can be 1 through 4).
*/
static inline void buffer_to_fifo32(void *buffer, size_t size, void *fifo,
int fifo_stride, int fifo_width)
{
buffer_to_fifo32_prefix(buffer, 0, 0, size, fifo,
fifo_stride, fifo_width);
}
/*
* Utilities to help processing bit fields.
*
* To define a bit field (usually inside a register), do:
*
* DEFINE_BITFIELD(name, high_bit, low_bit)
*
* - name: Name of the field to access.
* - high_bit: highest bit that's part of the bit field.
* - low_bit: lowest bit in the bit field.
*
* To define a field with a single bit:
*
* DEFINE_BIT(name, bit)
*
* To extract one field value from a raw reg value:
*
* EXTRACT_BITFIELD(value, name);
*
* To read from an MMIO register and extract one field from it:
*
* READ32_BITFIELD(&reg, name);
*
* To write into an MMIO register, set given fields (by names) to specified
* values, and all other bits to zero (usually used for resetting a register):
*
* WRITE32_BITFIELDS(&reg, name, value, [name, value, ...])
*
* To write into an MMIO register, set given fields (by names) to specified
* values, and leaving all others "unchanged" (usually used for updating some
* settings):
*
* SET32_BITFIELDS(&reg, name, value, [name, value, ...])
*
* Examples:
*
* DEFINE_BITFIELD(DISP_TYPE, 2, 1)
* DEFINE_BIT(DISP_EN, 0)
*
* SET32_BITFIELDS(&disp_regs.ctrl, DISP_TYPE, 2);
* SET32_BITFIELDS(&disp_regs.ctrl, DISP_EN, 0);
*
* SET32_BITFIELDS(&disp_regs.ctrl, DISP_TYPE, 1, DISP_EN, 1);
* WRITE32_BITFIELDS(&disp_regs.ctrl, DISP_TYPE, 1, DISP_EN, 1);
*
* READ32_BITFIELD(&reg, DISP_TYPE)
* EXTRACT_BITFIELD(value, DISP_TYPE)
*
* These will be translated to:
*
* clrsetbits32(&disp_regs.ctrl, 0x6, 0x4);
* clrsetbits32(&disp_regs.ctrl, 0x1, 0x0);
*
* clrsetbits32(&disp_regs.ctrl, 0x7, 0x3);
* write32(&disp_regs.ctrl, 0x3);
*
* (read32(&reg) & 0x6) >> 1
* (value & 0x6) >> 1
*
* The {WRITE,SET}32_BITFIELDS currently only allows setting up to 8 fields at
* one invocation.
*/
#define DEFINE_BITFIELD(name, high_bit, low_bit) \
_Static_assert(high_bit >= low_bit, "invalid bit field range"); \
enum { \
name##_BITFIELD_SHIFT = (low_bit), \
name##_BITFIELD_SIZE = (high_bit) - (low_bit) + 1, \
};
#define DEFINE_BIT(name, bit) DEFINE_BITFIELD(name, bit, bit)
#define _BF_MASK(name, value) \
(((1 << name##_BITFIELD_SIZE) - 1) << name##_BITFIELD_SHIFT)
#define _BF_VALUE(name, value) \
((value) << name##_BITFIELD_SHIFT)
#define _BF_APPLY1(op, name, value, ...) (op(name, value))
#define _BF_APPLY2(op, name, value, ...) ((op(name, value)) | \
_BF_APPLY1(op, __VA_ARGS__))
#define _BF_APPLY3(op, name, value, ...) ((op(name, value)) | \
_BF_APPLY2(op, __VA_ARGS__))
#define _BF_APPLY4(op, name, value, ...) ((op(name, value)) | \
_BF_APPLY3(op, __VA_ARGS__))
#define _BF_APPLY5(op, name, value, ...) ((op(name, value)) | \
_BF_APPLY4(op, __VA_ARGS__))
#define _BF_APPLY6(op, name, value, ...) ((op(name, value)) | \
_BF_APPLY5(op, __VA_ARGS__))
#define _BF_APPLY7(op, name, value, ...) ((op(name, value)) | \
_BF_APPLY6(op, __VA_ARGS__))
#define _BF_APPLY8(op, name, value, ...) ((op(name, value)) | \
_BF_APPLY7(op, __VA_ARGS__))
#define _BF_APPLYINVALID(...) \
_Static_assert(0, "Invalid arguments for {WRITE,SET}*_BITFIELDS")
#define _BF_IMPL2(op, addr, \
n1, v1, n2, v2, n3, v3, n4, v4, n5, v5, n6, v6, n7, v7, n8, v8, \
NARGS, ...) \
\
op(addr, \
_BF_APPLY##NARGS(_BF_MASK, n1, v1, n2, v2, n3, v3, n4, v4, \
n5, v5, n6, v6, n7, v7, n8, v8), \
_BF_APPLY##NARGS(_BF_VALUE, n1, v1, n2, v2, n3, v3, n4, v4, \
n5, v5, n6, v6, n7, v7, n8, v8))
#define _BF_IMPL(op, addr, ...) \
_BF_IMPL2(op, addr, __VA_ARGS__, \
8, INVALID, 7, INVALID, 6, INVALID, 5, INVALID, \
4, INVALID, 3, INVALID, 2, INVALID, 1, INVALID)
#define _WRITE32_BITFIELDS_IMPL(addr, masks, values) write32(addr, values)
#define WRITE32_BITFIELDS(addr, ...) \
_BF_IMPL(_WRITE32_BITFIELDS_IMPL, addr, __VA_ARGS__)
#define SET32_BITFIELDS(addr, ...) \
_BF_IMPL(clrsetbits32, addr, __VA_ARGS__)
#define EXTRACT_BITFIELD(value, name) \
(((value) & _BF_MASK(name, 0)) >> name##_BITFIELD_SHIFT)
#define READ32_BITFIELD(addr, name) \
EXTRACT_BITFIELD(read32(addr), name)
#endif /* __DEVICE_MMIO_H__ */